The Treatment of Resistant Bacterial Infection in Children

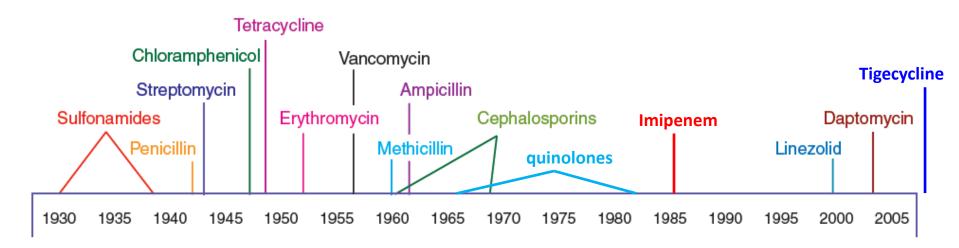
Andrew Whitelaw Division of Medical Microbiology, University of Stellenbosch & NHLS South African Antibiotic Stewardship Programme

SAPA/SAAPS Congress 10 Sept 2014

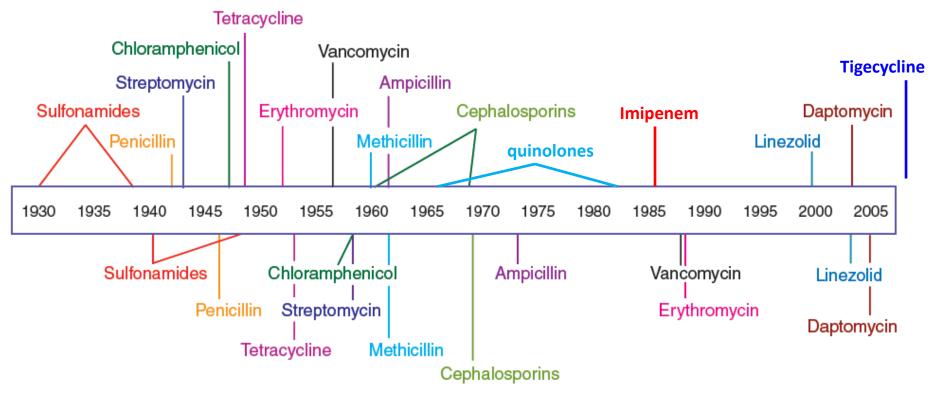
The Treatment of Resistant Bacterial Infection in Children (and adults...)

Andrew Whitelaw Division of Medical Microbiology, University of Stellenbosch & NHLS South African Antibiotic Stewardship Programme

SAPA/SAAPS Congress 10 Sept 2014


One of the biggest challenges...

Children are not small adults



New Antibiotics

Antibiotic deployment

Antibiotic deployment

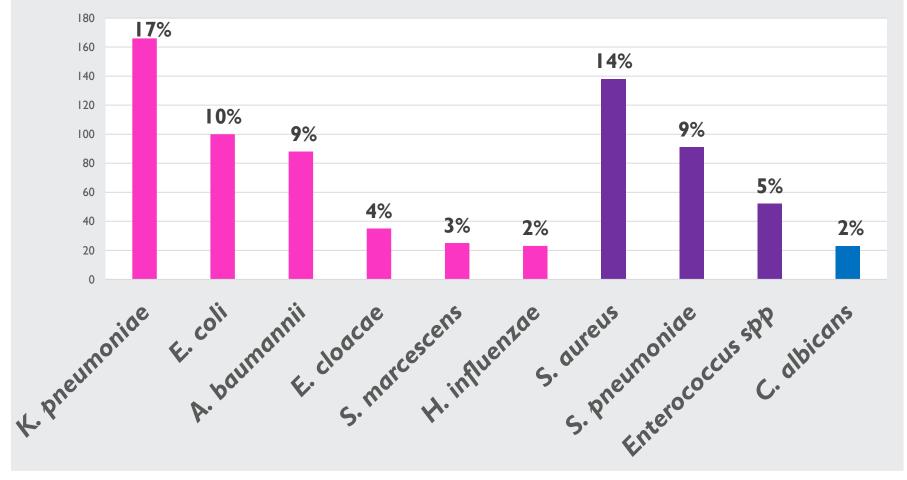
Antibiotic resistance observed

Nothing in the pipeline for another decade or more...

Do we know what's out there?

Paediatric BSI

	2008	2009	2010	2011	2012
Gram-positive, %					
Total, N	271	255	234	190	133
Streptococcus pneumoniae	34.3	36.4	26.5	22.1	14.3
Staphylococcus aureus	33.9	32.2	42.3	40.5	42.1
Streptococcus group B	6.3	5.1	6.8	5.8	4.5
Enterococcus faecium	4.8	7.1	3.4	5.3	11.3
Enterococcus faecalis	6.3	7.5	4.7	14.7	10.5
Gram-negative, %					
Total, N	338	408	376	325	232
Klebsiella pneumoniae	31.3	27.2	27.9	21.2	22
Escherichia coli	21.9	19.1	17	14.5	22
Acinetobacter baumannii	12.4	17.2	17.8	25.2	8.2
Serratia marcescens	2.4	7.1	7.4	7.1	10.3
Other, %					
Total, N	43	43	43	42	36
Candida albicans	73.8	77.5	53.5	32.5	55.6
Candida parapsilosis	14.3	17.5	18.6	27.5	11.1
Candida krusei	4.7	-	-	11.9	19.4
Candida lusitaniae	-	5	4.7	2.4	-
Candida tropicalis	2.3	-	16.3	-	5.6
Candida dubliniensis	-	-	2.3	12.5	-
Mycobacterium tuberculosis complex	2.3	7	-	4.8	2.8

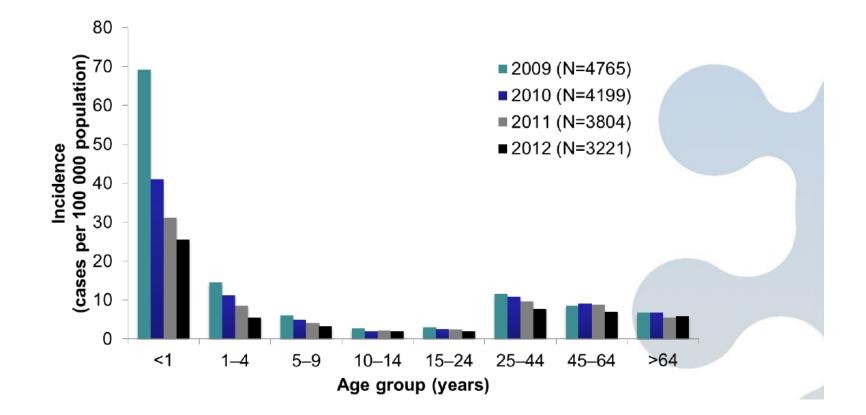

Red Cross Hospital, 2008-2012

Lochan, SAMJ, 2013

Paed bacteraemia TBH (2008-2013)

Top 10 BSI pathogens

(75% of total isolates)


Gram negatives (61.1%)

Gram positives (31.6%)

Fungi (7.3%)

Slide courtesy A Dramowski, TBH.

Pneumococcal infections

Age-specific incidence rates for laboratory-confirmed, invasive pneumococcal disease, reported to GERMS-SA, South Africa, 2009 through 2012

GERMS-SA Annual report 2012

MDR Invasive pneumococcal diseases

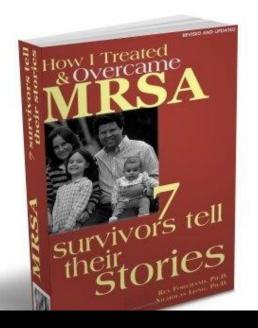
- Associated with
 - Younger age (<1; 2-5)</p>
 - HIV infection
 - Previous antibiotics (incl TB treatment)
 - PCV13 seroypes
- Not associated with
 - Gender
 - Site of infection
 - Outcome

Resistance

	2010	2011	2012
Penicillin non-susceptible	42%	34%	28%
Penicillin non-susceptible (<5yrs old)	61%	44%	35%
Ceftriaxone non-susceptible	8%	5%	5%

Reduction thought to be related to reduction in vaccine serotypes

For respiratory infections:


- Penicillin/amoxicillin still appropriate
- High level penicillin resistance (MIC >2) rare about 5%

For meningitis:

- Ceftriaxone empirically
- If ceftriaxone MIC >1 ceftriaxone plus vancomyin; or moxifloxacin plus rifampicin

S. aureus

World MRSA Day

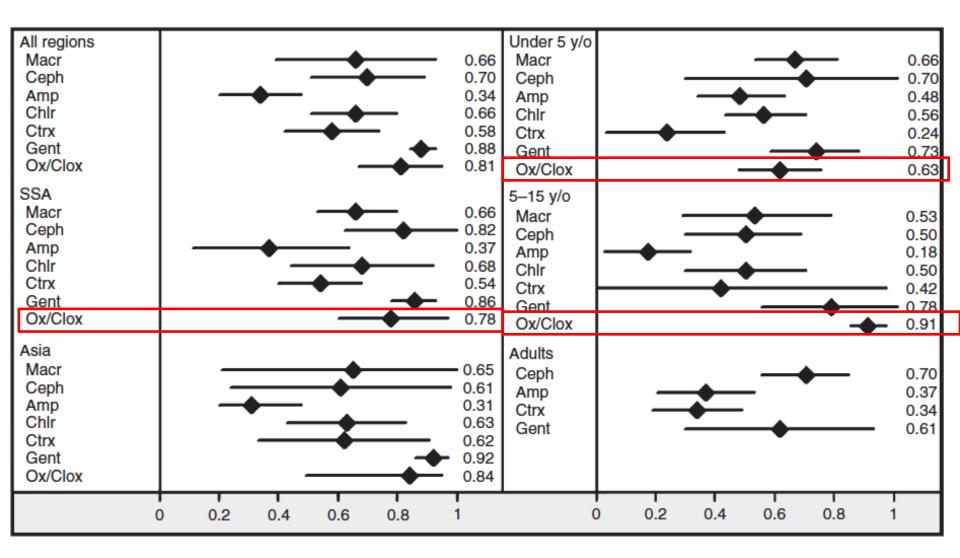
Saturday, October 1st 10:30am Loyola University Stritch School of Medicine

> 2160 S. First Ave Maywood, IL 60153

Resistance - community

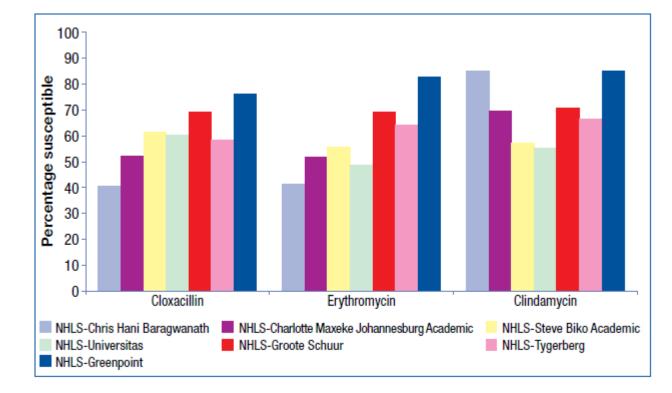
Review

Antimicrobial susceptibility of bacterial isolates from community acquired infections in Sub-Saharan Africa and Asian low and middle income countries


Elizabeth A. Ashley^{1,2}, Yoel Lubell^{1,3}, Nicholas J. White^{1,3} and Paul Turner^{1,3,4}

Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
 Imperial College NHS Trust, London, UK
 Centre for Tropical Medicine, University of Oxford, Oxford, UK
 Shoklo Malaria Research Unit, Mae Sot, Thailand

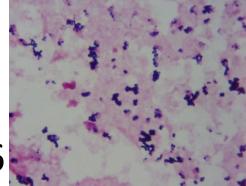
Trop Med Int Health, 2011


- 2004 onwards
- Urine and blood
- >1 month old patients

Definition of community acquired not stringent

Figure 2 Proportion susceptible of *S. aureus* by region (left) and age group (right). Macr – macrolides; Ceph – **third** generation cephalosporins; Amp – aminopenicillins; Chlr – chloramphenicol; Ctrx – co-trimoxazole; Gent – gentamicin; Ox/Clox – oxacillin/cloxacillin.

Ashley, TMIH, 2011



Combined adults and children Combined community and hospital acquired

Figure 6: Susceptibility of *Straphylococcus aureus* isolated from blood to selected antimicrobial agents at seven participating laboratories, South Africa, 2010

Bamford et al, SA J Epi and Infect 2011

MRSA

- Baragwanath Hosp, Jhb, 2005-2006
 - 39% of CA SAB were MRSA (n=161)
 - Many had been hospitalised in previous year
 - CA defined as pos BC within 48 hrs of admission
- Red Cross Children's Hospital, CT, 2007-2011
 - 3% CA SAB were MRSA
 - 72% of nosocomial SAB were MRSA
 - CA defined as pos BC within 48 hrs admission,
 with none of the CDC defined risks for HA MRSA

Groome, Paed & Int Child Health, 2012 Naidoo, PLoS One, 2013

MRSA outcome and vanc MIC

	High MIC≥1.5	µg/mL	Low MIC<1.5	iµg/mL		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% Cl
Bae et al (12)	13	37	11	28	6.5%	0.84 [0.30, 2.31]	_
Choi et al (15)	4	34	6	36	4.6%	0.67 [0.17, 2.60]	
Haque et al (19)	41	115	10	43	7.9%	1.83 [0.82, 4.08]	+
Hidayat et al (21)	12	51	4	44	5.3%	3.08 [0.91, 10.37]	
Holmes et al (23)	28	94	16	105	8.8%	2.36 [1.18, 4.71]	
Lalueza et al (32)	2	13	14	50	3.6%	0.47 [0.09, 2.38]	
Liao et al (34)	13	40	46	137	8.3%	0.95 [0.45, 2.02]	-4-
Lodise et al (36)	12	66	3	26	4.7%	1.70 [0.44, 6.61]	•
Musta et al (43)	60	206	7	36	7.4%	1.70 [0.71, 4.10]	- +
Neuner et al (45)	39	186	1	10	2.5%	2.39 [0.29, 19.42]	
Schweizer et al (50)	46	341	3	20	5.1%	0.88 [0.25, 3.13]	
Soriano et al (52)	37	130	6	38	6.9%	2.12 [0.82, 5.49]	+
Takesue et al (53)	33	97	62	662	10.4%	4.99 [3.04, 8.18]	
van Hal et al (54)	38	117	73	236	10.6%	1.07 [0.67, 1.73]	+
Wang et al (55)	13	26	27	97	7.3%	2.59 [1.07, 6.30]	
Total (95% CI)		1553		1568	100.0%	1.64 [1.14, 2.37]	◆
Total events	391		289				
Heterogeneity: Tau ² =	0.27; Chi ² = 34.0	7, df = 14	4 (P = .002); I ²	= 59%			
Test for overall effect:	Z = 2.65 (P = .00)8)					0.01 0.1 1 10 10 Low MIC mortality High MIC mortal

Figure 2. Forest plot (using Mantel-Haenszel analysis) of events denoting methicillin-resistant *S. aureus* mortality (irrespective of source of infection and minimum inhibitory concentration [MIC] methodology used) comparing high vancomycin MIC (\geq 1.5 µg/mL) with low MIC (<1.5 µg/mL) infections. Squares indicate point estimates, and the size of the square indicates the weight of each study. Abbreviations: CI, confidence interval; M-H, Mantel-Haenszel; MIC, minimum inhibitory concentration.

Van Hal, CID, 2012

Table 2. Eligible Studies Examining the Association Between Mortality and Vancomycin Minimum Inhibitory Concentration (MIC) Classified by MIC Categories 1.5 µg/mL and 2 µg/mL Separately

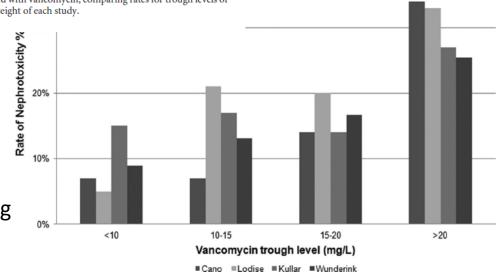
		Number				Mortality% (n)		
	Study	of MRSA, (MSSA)		MIC	Van	ncomycin MIC (µg/	/mL)	
	Population	Isolates	Source		≤1	1.5	≥2	Comments
Bae et al [12]	See Table 1	65 (0)	IE	Etest	39% (11/28)	29% (9/31)	67% (4/6)	
Haque et al [19]	See Table 1	158 (0)	HAP	Etest	23% ^a (10/43)	30% ^a (26/86)	52% ^a (15/29)	
Holmes et al [23]	See Table 1	199 (324)	BSI	Etest	12% ^a (7/57)	13% ^a (35/272)	27% ^a (48/179)	Mortality rates were similar for MIC

	MIC≥2µ	g/mL	MIC=1.5µ	g/mL		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
Bae et al (12)	4	6	9	31	1.1%	4.89 [0.76, 31.60]	
Haque et al (19)	15	29	26	86	6.9%	2.47 [1.04, 5.85]	
Holmes et al (23)	48	179	32	272	20.2%	2.75 [1.67, 4.51]	
Musta et al (43)	10	21	50	185	5.8%	2.45 [0.98, 6.13]	
Neuner et al (45)	21	76	18	110	11.6%	1.95 [0.96, 3.98]	
Schweizer et al (50)	18	111	28	230	16.6%	1.40 [0.74, 2.65]	- -
Soriano et al (52)	26	92	60	213	28.3%	1.00 [0.58, 1.73]	
van Hal et al (54)	5	21	32	96	9.5%	0.63 [0.21, 1.86]	
Total (95% CI)		535		1223	100.0%	1.72 [1.34, 2.21]	•
Total events	147		255				
Heterogeneity: Chi ² =	13.50, df =	7 (P = .	06); l² = 48	%			
Test for overall effect:		,					0.01 0.1 1 10 100 Mortality 1.5µg/mL Mortality ≥2µg/mL

Figure 4. Forest plot (using Mantel-Haenszel analysis) of events denoting *S. aureus* mortality (irrespective of source of infection) comparing Etest vancomycin minimum inhibitory concentrations (MIC) of 1.5 μ g/mL with MIC \geq 2 μ g/mL. Squares indicate point estimates, and the size of the square indicates the weight of each study. Abbreviations: CI, confidence interval; M-H, Mantel-Haenszel; MIC, minimum inhibitory concentration.

MRSA and vancomycin

- Increasing numbers of MRSA with vanco MICs >1,5ug/ml
- Need to monitor levels
 - troughs 15-20 ug/ml
 - No need to monitor peak levels
- Dose 15mg/kg 6 hourly (10mg/kg if renal impairment)
- Debate about continuous infusion
 - Clinical outcomes similar, but fewer SE, better drug levels
- Use alternatives esp if vanco MIC>=2
 - Cotrimoxazole, linezolid, clindamycin


Vancomycin and toxicity

	High troughs ≥15	img/L	Low trough <1	5mg/L		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bosso et al. (21)	42	142	13	146	9.8%	4.30 [2.19, 8.43]	
Cano et al. (22)	22	89	7	99	7.2%	4.32 [1.74, 10.69]	
Chung et al. (23)	12	25	16	48	6.5%	1.85 [0.69, 4.96]	
Hermsen et al. (30)	5	16	4	39	3.6%	3.98 [0.91, 17.46]	
Hidayat et al. (13)	11	63	0	32	1.1%	14.24 [0.81, 249.87]	+ -
Jeffres et al. (15)	27	49	13	45	7.7%	3.02 [1.28, 7.11]	_
Kralovicova et al. (31)	21	60	29	138	9.8%	2.02 [1.04, 3.96]	— •
Kullar et al. (32)	8	116	1	84	2.0%	6.15 [0.75, 50.13]	+
Kullar et al. (8)	27	139	23	141	10.6%	1.24 [0.67, 2.28]	- -
Lodise et al. (36)	7	27	14	139	6.2%	3.13 [1.12, 8.69]	
McKamy et al. (38)	16	57	8	110	7.0%	4.98 [1.98, 12.52]	
Minejima et al. (39)	17	72	25	155	9.6%	1.61 [0.80, 3.21]	+
Prabaker et al. (43)	7	54	24	294	7.3%	1.68 [0.68, 4.11]	+•
Wunderink et al. (50)	26	118	24	215	10.7%	2.25 [1.22, 4.13]	_
Zimmermann et al. (51)	8	12	0	33	1.0%	126.56 [6.19, 2585.90]	│ — →
Total (95% CI)		1039		1718	100.0%	2.67 [1.95, 3.65]	•
Total events	256		201				
Heterogeneity: Tau ² = 0.14	Heterogeneity: Tau ² = 0.14; Chi ² = 23.89, df = 14 (P = 0.05); l ² = 41%						0.01 0.1 1 10 100
Test for overall effect: Z = 6	6.13 (P < 0.00001)						Low troughs <15mg/L High troughs ≥15mg/L

FIG 1 Forest plot (using Mantel-Haenszel [M-H] analysis) of events denoting nephrotoxicity associated with vancomycin, comparing rates for trough levels of \geq 15 mg/dl and <15 mg/dl. Squares indicate point estimates, and the size of the square indicates the weight of each study.

Effect of concomitant nephrotoxins Higher in ICU patients Generally reversible

Guidelines on how to adjust dosages lacking

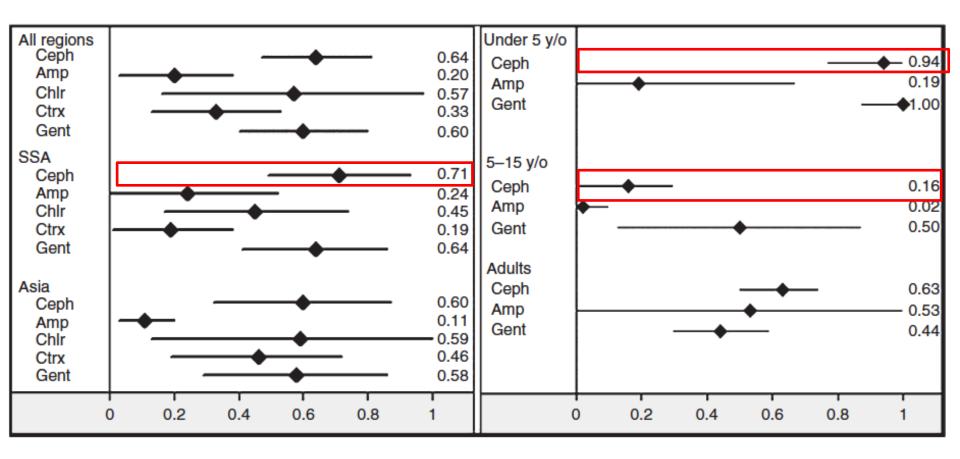

Van Hal. Antimicrob Agents Chemother 2013; 57: 734

FIG 3 Incidence of vancomycin nephrotoxicity with rising trough levels (8, 22, 36, 50).

If not vancomycin, then what?

- Daptomycin
 - SSI, R sided IE
 - NOT resp tract infection
- Linezolid
 - Possibly superior to vancomycin for HAP, VAP
 - Good oral bioavailability
 - Clinical cures in 75-93%
 - SE more common with prolonged therapy
- Don't forget clindamycin, cotrimoxazole, moxifloxacin
 - Probably better for minor infections, oral therapy
- SOURCE CONTROL

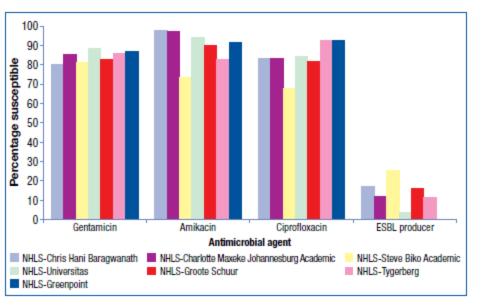
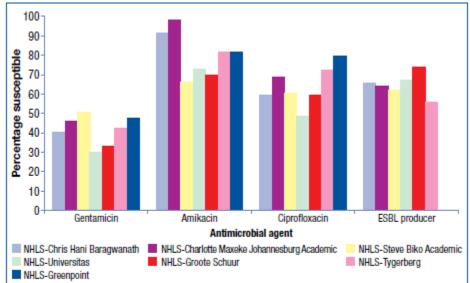

Gram negative bacilli

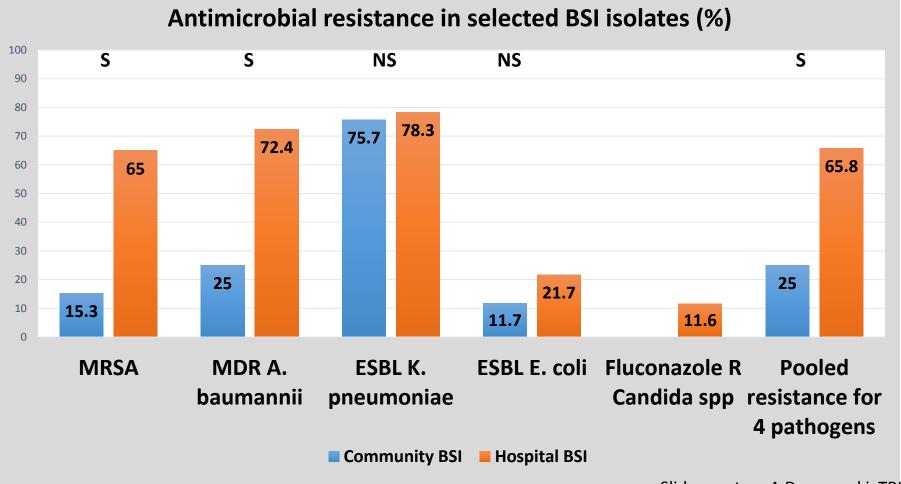
Figure 5 Proportion susceptible of *Klebsiella* spp. by region (left) and age group (right). Macr – macrolides; Ceph – **third** generation cephalosporins; Amp – aminopenicillins; Chlr – chloramphenicol; Ctrx – co-trimoxazole; Gent – gentamicin.

Ashley, TMIH, 2011

Bacteraemia data

Figure 1: Susceptibility of *Escherichia coli* isolated from blood to selected antimicrobial agents at seven participating laboratories, South Africa, 2010




Figure 2: Susceptibility of *Klebsiella pneumoniae* isolated from blood to selected antimicrobial agents at seven participating laboratories, South Africa, 2010

All pos BCs in state sector, adults and children No differentiation between CA and HCA

Bamford et al, SA J Epi and Infect 2011

CA-ESBL

• Increasing concern in Europe, USA

Slide courtesy A Dramowski, TBH.

ESBL producing Enterobacteriaceae

- Carbapenems regarded as best option
 - Ertapenem narrower spectrum
 - Meropenem / imipenem in <3 month olds</p>
 - Meropenem if CNS infection / CNS pathology
- Beta-lactamase inhibitor combinations
 - Poor quality data, very limited paediatric data
 - May be effective for UTIs

Ertapenem

Carbapenem stewardship: does ertapenem affect *Pseudomonas* susceptibility to other carbapenems? A review of the evidence

David P. Nicolau^{a,*}, Yehuda Carmeli^b, Christopher W. Crank^c, Debra A. Goff^d, Christopher J. Graber^e, Ana Lucia L. Lima^f, Ellie J.C. Goldstein^{g,h}

Setting	Study period (addition of ertapenem)	Ertapenem use (DDD)	Group 2 carbapenem use (DDD before/after ^a)	% carbapenem susceptible (pre versus post ertapenem introduction)
Single centre, ca. 300-bed tertiary centre/teaching hospital; USA [16] ^b	March 2004 to December 2008 (July 2005)	58.4/1000 PD	37.5 to 21.0/1000 PD	Pseudomonas, 62.2 vs. 70.4 (P – N/S) Enterobacteriaceae, 82.5 vs. 88.6 (P – N/S)
Single centre, 344-bed teaching hospital; USA [6] ^c	January 2002 to December 2005 (July 2003)	44/1000 PD (median)	30 to 25/1000 PD (median)	Pseudomonas, 69 vs. 88 Enterobacteriaceae, no change
Single centre, 770-bed teaching hospital; USA [7] Single centre, 770-bed teaching hospital; USA [14]	January 2002 to December 2007 (May 2003) January 2003 to December 2008 (May 2003)	3.4 to 8.9/1000 PD	21.5 to 31.1/1000 PD	Pseudomonas, 69 vs. 88 Enterobacteriaceae, no change
Retrospective, longitudinal hospital database study of nine medical wards (400 beds, 139 185 patient admissions, 504 ward months); Israel [15] ^d	2001 to 2005 (2001)	2130	4637	Pseudomonas, 3.8% annual increase in imipenem-resistant Pseudomonas (P - 0.001), associated only with group 2 carbapenem use (P - 0.0014)
Single-centre study using pharmacy purchase records and microbiology reports; USA [13]	2000 to 2007 (2003)	1670 (2003 to 2007)	1650 to 2295	Pseudomonas, 73.2 vs. 71.9 (P–N/S) (imipenem); 76.6 vs. 71.9 (P–0.0001) (meropenem)
Single centre, 200-bed tertiary care centre; Brazil [10,11]	March 2005 to March 2007 (March 2006)	42.6/1000 PD	46.3 to 16.1/1000 PD	Pseudomonas, 20 to 0 (P-N/S)
Single centre, 200-bed, tertiary care centre; Brazil [12]	April 2006 to March 2008 (2006)	31.5/1000 PD	61.1 to 48.7 DDD/1000 PD	Pseudomonas, Acinetobacter, Enterobacteriaceae, no change
Multicentre (25 community and teaching hospitals), retrospective, data analysis; USA [8,9]	January 2000 to December 2008	7.3 to 15.9 ^e	10.4 to 15.3 ^e	Pseudomonas, 85.4 to 81.0 (P-N/S)

What else...

- Aminoglycosides
 - Mainly for UTI
- Quinolones, co-trimoxazole
 - Good options for de-escalation if isolate susceptible
- Fosfomycin
 - High urine concs after single dose
 - Poor serum / renal parenchyma levels only for cystitis
 - IV form not available in SA (yet...)

Bacteraemia data

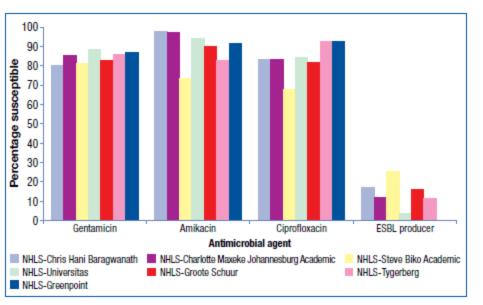
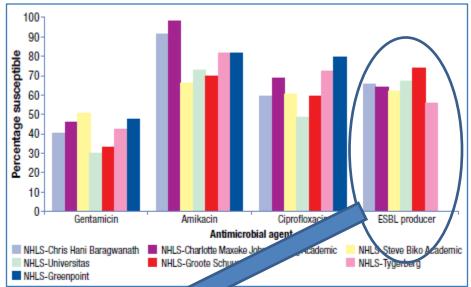
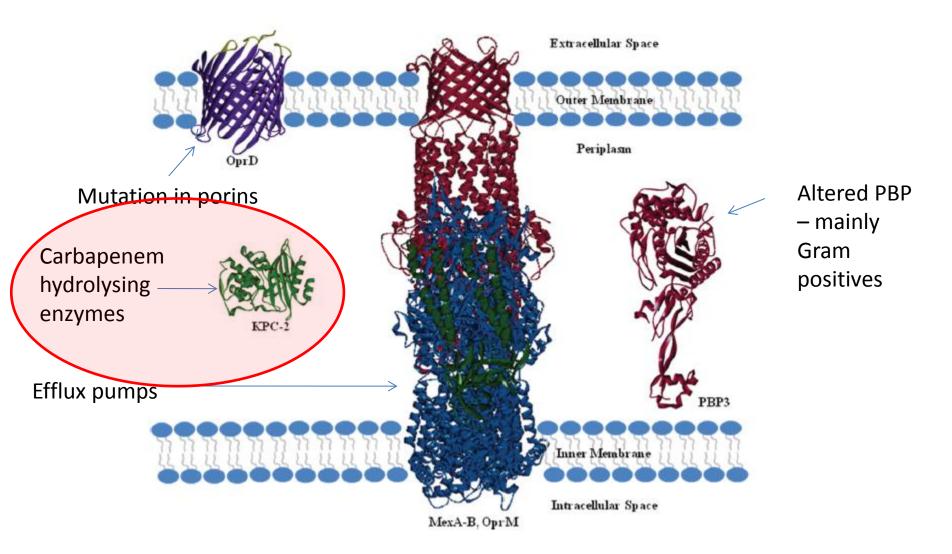



Figure 1: Susceptibility of *Escherichia coli* isolated from blood to selected antimicrobial agents at seven participating laboratories, South Africa, 2010

Figure 2: Susceptibility *inebsiella pneumoniae* isolated from blood to selected antimicrobial at seven participating laboratories, South Africa, 2010

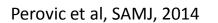

Bamford et al, SA J Epi and Infect 2011

Carbapenem resistance – beyond Acinetobacter and Pseudomonas

Klebsiella pneumoniae	2007 (n=1778)	2010 (n=1914)
ESBL producers – resistant to all cephalosporins	49%	65%
Gentamicin resistance	50%	43%
Fluoroquinolone resistance	28%	37%
Carbapenem resistance (ertapenem)	Not reported	2%

Data from: Bamford. South Afr J Epidemiol Infect 2009; 24: 28-30 Bamford. South Afr J Epidemiol Infect 2011; 26 (Part II): 243-250

Carbapenem resistance



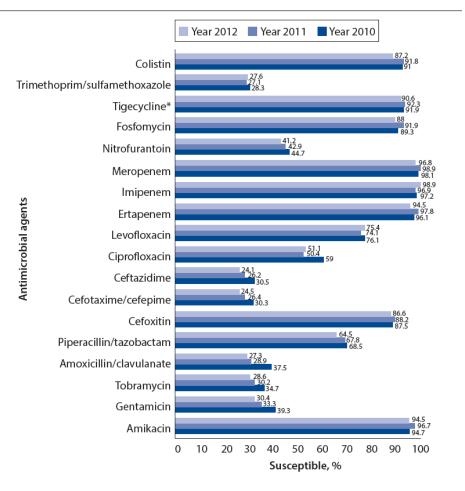

National sentinel site surveillance for antimicrobial resistance in *Klebsiella pneumoniae* isolates in South Africa, 2010 - 2012

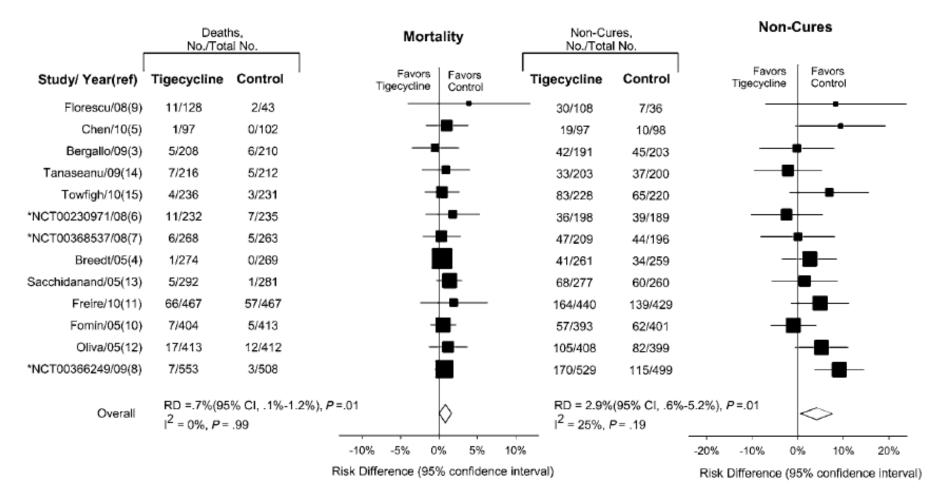
Table 2. Provinces of submission of *K. pneumoniae* isolates 2010 - 2012 and proportion of isolates found to be ESBL-positive or to have reduced susceptibility to carbapenems

	Isolates	ESBL-positive	
	submitted 2010 -	isolates	Reduced carbapener
Province	2012, N	2010 - 2012, n (%)	susceptibility, n (%)
Gauteng	1 737	1 207 (69.5)	75 (4.3)
Western Cape	620	414 (66.8)	25 (4.0)
KwaZulu-Natal	268	203 (75.7)	15 (5.6)
Free State	134	59 (44.0)	7 (5.2)
Limpopo	15	12 (80.0)	2 (13.3)
Totals	2 774	1 895 (68.3)	124 (4.5)

ESBL = extended-spectrum beta-lactamase.

Clinical Significance

- Not always easy to detect by susceptibility testing – awareness!
- If present, often limited therapeutic options
 - ?combination therapy / alternative agents
 - Imipenem plus colistin
 - Aztreonam (not hydrolysed by most MBLs)
 - Tigecycline (but P. aeruginosa resistant)
 - Fosfomycin no IV form locally
 - Carbapenem plus colistin plus tigecycline


Tigecycline

- Glycylcycline, related to tetracyclines
- Broad spectrum Gram pos and Gram neg cover
 - Not active against Pseudomonas
 - Tetracycline derivative not registered for <8yr olds
- Response rates
 - 68%-84% (VAP adults)
 - 75-90% (cSSSI, cIAI, CAP children 8-11)
- Emergence of resistance on therapy
 - Large volume of distribution, low serum levels
 - Concern about treating bacteraemia
- Dose in children ?(1,2mg/kg bd suggested)

Garnaco-Montero. Cur Opin Infect Dis 2010; 23: 332 Gordon. JAC 2009; 63: 775 Purdy. Clin Therap 2012; 34: 496

Excess Deaths Associated With Tigecycline After Approval Based on Noninferiority Trials

Paritosh Prasad, Junfeng Sun, Robert L. Danner, and Charles Natanson

Clinical Infectious Diseases 2012;54(12):1699–709

Colistin - Efficacy

- Review of 5 retrospective case series
 - Clinical response 25-61% (>50% in 4/5 studies)
 - One study compared to imipenem both 57%
 - Superinfection with colistin resistant organisms uncommon (3 pts)
 - Clinical response in extrapulm infection seems better (72-75%)
 - ?poor lung penetration

Colistin dosing

- Peak:MIC and AUC:MIC important predictors
- More is probably better
- Loading dose recommended
- Twice vs thrice daily?

High-Dose, Extended-Interval Colistin Administration in Critically Ill Patients: Is This the Right Dosing Strategy? A Preliminary Study

Lidia Dalfino,¹ Filomena Puntillo,¹ Adriana Mosca,² Rosa Monno,² Maria Luigia Spada,¹ Sara Coppolecchia,¹ Giuseppe Miragliotta,² Francesco Bruno,¹ and Nicola Brienza¹ Clinical Infectious Diseases 2012;54(12):1720-

Colistin dosing

Number	Dose	Outcome	Ref
29 children / 38 courses	5mg/kg/day 75 000U/kg/day	79% good outcome	Korbuz, PIDJ, 2014
31 patients / 41 courses	5mg/kg/day	68,3% good outcome	Konti, Annals Clin Micro and Antimicrob, 2013
27 children / 30 courses	5-8mg/kg/day	53,3% improved	Dimitriades, Arch Dis Child, 2014
50 patients	50 – 75 000 U/kg/day	72% good outcome	Kapour, Ped Crit Care Med, 2013
79 children / 87 courses	5,4mg/kg/day	83,9% good outcome	Paksu, Int J Antimicrob Agents, 2012

Survey of clinicians No loading dose used Commonest dose 2,5mg/kg/BD 84% used additional antibiotics

Colistin dosing

- Loading dose recommended in adults
 - 9mU loading (up to 12mU...)

– 4,5 mU BD

- Limited data in children
 - 75 85 000 U/kg/dose BD (2.5mg base/kg/dose)
 - Loading dose suggested 160-170 000 U/kg (5mg base/kg)
 - No evidence!

Fosfomycin

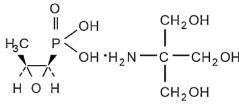


Figure 1. Chemical structure of fosfomycin

- Inhibits cell wall synthesis
- Broad spectrum
 - >95% E. coli susceptible
 - Less so for other GNB
- Clinical success / cure in >90% patients with ESBL
 E. coli UTI
- Dose in children >5yrs 2g stat

Study or Subaroup			Compar			Risk ratio	Risk ratio M-H, Random, 95% CI
			Evenus	Total	weight	Men, Kulluolli, 55% C	M-H, Kulluolli, 95% CI
1.3.1 Fosfomycin vs (Naber 1990	135	194	92	107	4.9%	0.81 [0.72, 0.91]	
Boerema 1990	51	57	48	50	4.9%	0.93 [0.84, 1.04]	·
Raynaert 1990	14	16	14	16	1.7%	1.00 [0.77, 1.30]	
De Jong 1991	31	33	26	30	3.4%	1.08 [0.92, 1.28]	_ _
Cortes 1992	25	25	36	40	4.9%	1.10 [0.98, 1.24]	+
Richaud 1995	26	29	25	28	3.1%	1.00 [0.84, 1.20]	
Bozkurt 2008	47	50	48	50	6.2%	0.98 [0.89, 1.07]	
Subtotal (95% CI)		404		321	29.7%	0.98 [0.89, 1.07]	-
Total events	329		289			. , .	
Heterogeneity: x2=0.01	$1; \chi^2 = 18$.29, df	-6 (P-0.	006); I	2-67%		
Test for overall effect:	Z=0.52	(P=0.0	50)				
1.3.2 Fosfomycin vs t	rimetho	nrim					
Harvard Davis 1990	17	22	12	22	0.7%	1.42 [0.91, 2.21]	,
Minassian 1998	147	177	70	84	5.0%	1.00 [0.89, 1.12]	
Subtotal (95% CI)	147	199	10	106	5.7%	1.12 [0.80, 1.56]	
Total events	164	133	82	100	33 70	1.12 [0.00, 1.50]	
Heterogeneity: $\tau^2 = 0.04$	· 7 /	43 df-	1 (P=0.1	2): 1 ² -	59%		
Test for overall effect:					2210		
1.2.2 Footomusla us							
1.3.3 Fosfomy cln vs tr Naber 1990	imetho 135	prim-si 194	utrametr 73	10X 02 0 99	e 3.8%	0.94 [0.81, 1.10]	
Crocchiolo 1990	135	194	15	17	2.6%	1.13 [0.93, 1.38]	<u> </u>
Subtotal (95% CI)	19	213	15	116	6.5%	1.02 [0.84, 1.24]	
	154	213	88	110	0.370	1.02 [0.04, 1.24]	
Total events Heterogeneity: $\tau^2 = 0.03$		A de-		21. 12-	500		
Test for overall effect:				2), 1 -	3376		
		-					
1.3.4 Fosfomycin vs t Elhanan 1994	Seta-lac 53	tams 58	45	54	4.0%	1.10 (0.95, 1.27)	
Subtotal (95% CI)	23	58	40	54	4.0%	1.10 [0.95, 1.27]	
Total events	53	50	45		4.0 70	1.10 [0.55, 1.17]	
Heterogeneity: Not a			40				
Test for overall effect:			21)				
1 3 F Footomucin us							
 1.3.5 Fosfomycin vs r Stein 1999 	146	168	177	157	5.9%	1.07 [0.98, 1.18]	<u> </u>
Subtotal (95% CI)	140	168	127	157	5.9%	1.07 [0.98, 1.18]	<u> </u>
Total events	146		127				-
Heterogeneity: Not a							
Test for overall effect:			14)				
1.3.6 Fosfomycin vs o				10	1.70	1 00 10 77 1 201	
Raynaert 1990	14	16	14	16	1.7%	1.00 [0.77, 1.30]	
Boerema 1990 Naber 1990	51 135	57 194	48 165	50 206	5.5% 5.1%	0.93 [0.84, 1.04] 0.87 [0.77, 0.97]	
Crocchiolo 1990	19	194	105	17	2.6%		
Harvard Davis 1990	17	22	12	22	0.7%	1.13 [0.93, 1.38] 1.42 [0.91, 2.21]	
	31	33	26	30	3.4%	1.08 [0.92, 1.28]	
De Jong 1991 Cortes 1992	25	25	36	40	4.9%	1.10 [0.98, 1.24]	
Elhanan 1994	53	58	45	54	4.0%	1.10 [0.95, 1.27]	+
Richaud 1995	26	29	25	28	3.1%	1.00 [0.84, 1.20]	
Minassian 1998	147	177	70	84	5.0%	1.00 [0.89, 1.12]	_ _
Stein 1999	146	168	127	157	5.9%	1.07 [0.98, 1.18]	+
Bozkurt 2008	47	50	48	50	6.2%	0.98 [0.89, 1.07]	- +
Subtotal (95% CI)		848		754	48.2%	1.02 [0.97, 1.07]	+
Total events	711		631				I
Heterogeneity: $\tau^2 = 0.00$	$\gamma^2 = 18$.59, df	-11 (P-0	0.07); 1	2-41%		
Test for overall effect:	Z=0.64	(P-0.9	52)				
						L	
						0.5	0.7 1 1.5 2
						Favours con	mparator(s) Favours fosformycir

Falagas. J Antimicrob Chemo 2010, 65: 1862

2 paed RCTs; RR 0.98 (0.92-1.05)

Fosfomycin

- IV form potential option for serious infections
- Good in vitro activity against MDR GNB (incl Pseudomonas)
 - Best lab testing methodology still unclear
 - Acinetobacter resistance is common
- Limited published experience using IV; even less in children...
- Possibly needs to be used in combination

Michalopolous. Clin Micro Infect 2010; 16: 184 Pontikis. Int J Antimicrob Agents 2014; 43: 52 Perdigao-Neto. Antimicrob Agents Chemother 2014 (epub)

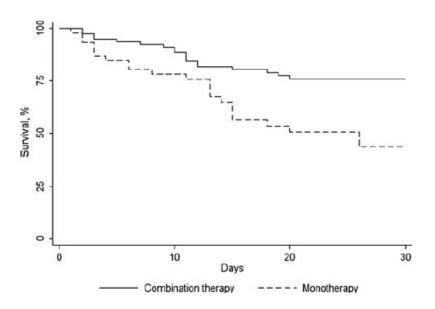
IV Fosfomycin in children

- Appears safe
- Limited efficacy studies
- Dosing in children unclear

	1-12y	1-12 mo	Preterm, neonates 0-1mo
Austria	4-8g; 2-3x daily	100-200mg/kg/d (max 400); 2-3x daily	100-200mg/kg/d (max 400); 2-3x daily
Germany	100-200mg/kg/d (max 300); 3x daily	200-250mg/kg/d, 3x daily	100mg/kg/d 2x daily
Spain	200-400mg/kg/d, 2-3x daily		
France	100-200mg/kg/d		

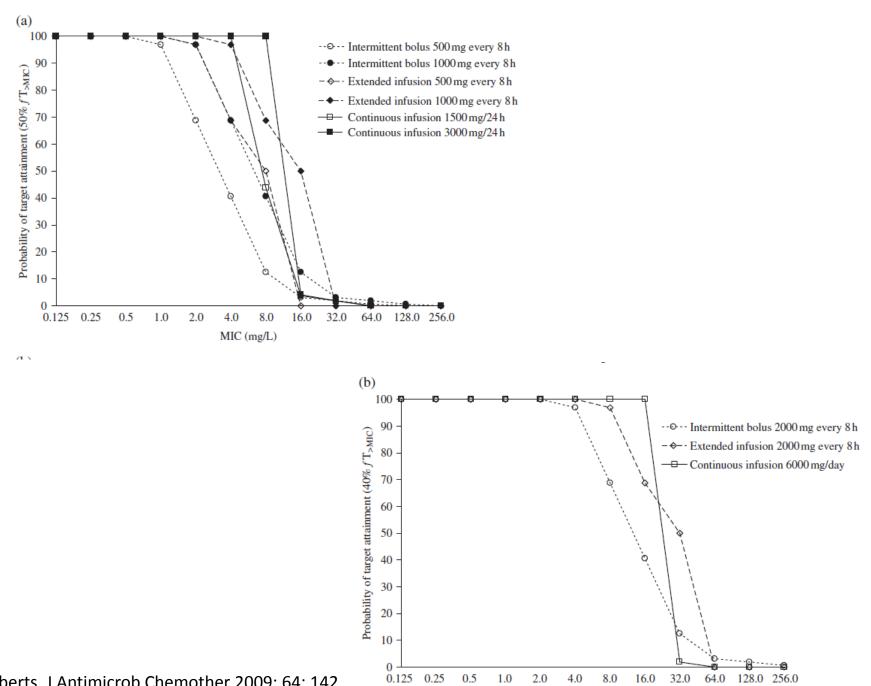
Age group	T>MIC32 value (%)									
	50 mg bid	100 mg bid	200 mg bid	50 mg tid	70 mg tid	100 mg tid	25 mg qid	50 mg qid	70 mg qid	100 mg qid
Children aged 3–12 y ^[31]	20	30	40	30	37	45	20	40	50	61
Children aged 5–6 y ^[32]	24	39	54	38	49	60	29	53	67	82
Full-term and pre-term neonates[32]a	41	67	87	69	85	105	54	102	124	146
Pre-term neonates aged 1-3 d ^[33]	100	159	219	181	224	271	156	276	334	396
Pre-term neonates aged 20-34 d ^[33]	60	101	142	107	137	169	80	163	203	245

• T>MIC important parameter


- Suggest higher dose of 100mg/kg/dose 6 hourly (ie total 400mg/kg/day)
 - Need clinical and safety data to back this up...

Role of carbapenems

Table 4. Outcomes of the 36 Bloodstream Infections Treated With Combination Therapy Including Meropenem Stratified by Meropenem Minimum Inhibitory Concentration


		No. (%)				
Meropenem MIC (mg/L)	Total	Nonsurvivors	Survivors			
1	1	0	1 (100)			
2	4	0	4 (100)			
4	10	2 (20)	8 (80)			
8	4	1 (25)	3 (75)			
≥16	17	6 (35.2)	11 (64.7)			
Total	36	9 (25)	27 (75)			

Abbreviation: MIC, minimum inhibitory concentration.

Figure 2. Kaplan-Meier curves showing the impact of combination therapy (solid line) versus monotherapy (dotted line) on 30-day mortality of patients with *Klebsiella pneumoniae* carbapenemase–producing *K. pneumoniae* isolate bloodstream infections (*P*=.002).

Therapy with tigecycline + meropenem + colistin : Mortality OR 0.11 (0.02-0.69)

.

Roberts. J Antimicrob Chemother 2009; 64: 142

.

÷

.

MIC (mg/L)

So what do I do with my carbapenem resistant Klebsiella?

- Look at available MICs
 - Current criteria may not be best predictors of outcome
 - Combination therapy
 - Which combination???
 - Probably include a carbapenem unless MICs very high (>16ug/mL)
 - Carbapenem plus colistin plus tigecycline
 - Optimise dosing of carbapenem extended infusion

Mortality

	Carbapenemase producing Klebsiella	Carbapenem resistant Klebsiella
Tigecyclin - colistin	0-30%	25 & 31%
Tigecycline - gentamicin	0-50%	
Carbapenem - colistin	0-67%	
Colistin - gentamicin	40-61%	
Carbapenem	9-50%	50%
Tigecycline	0-53%	73%
Colistin	33-57%	50%

Numerous other combinations (fosfomycin, carbapenem, FQ, tigecycline, colistin, amikacin, piptazobactam, gentamicin, linezolid, vancomycin, doxycycline)

Infections – Acinetobacter...

 Table 2.
 Sources of bloodstream infection (BSI) caused by either Acinetobacter baumannii, Acinetobacter species other than A. baumannii, or other gram-negative pathogens.

		No. (%) of patients					
Source of entry		Acinetobacter	Other gram-negative				
	All $(n = 129)$	A. non-baumannii ($n = 18$)	A. baumannii ($n = 111$)	pathogens $(n = 2952)^{a}$	Р	OR	95% CI
Intravenous device	26 (20.2)	2 (11.1)	24 (21.6)	470 (15.9)	NS	_	
Respiratory tract	21 (16.3)	1 (5.6)	20 (18.0)	324 (11.0)	NS		_
Urinary tract	2 (1.6)	_	2 (1.8)	462 (15.6)	.0001	10.1	2.5-31.5
Gastrointestinal tract	3 (2.3)	1 (5.6)	2 (1.8)	190 (6.4)	NS		
Wound infection	7 (5.4)	2 (11.1)	5 (4.5)	152 (5.2)	NS		_
Other	6 (4.6)	2 (11.1)	4 (3.6)	114 (3.9)	NS		_
Unknown	64 (49.6)	10 (55.6)	54 (48.6)	240 (42.0)	NS		_

Wisplinghoff. CID 2000; 31: 90

4 year study, multicentre, US, adult and paeds

and Pseudomonas

Table 3 Primary diagnoses of bacteremic P. aeruginosa infections.									
Primary diagnosis (n = 249)	Total number (% ^a)	Nosocomial	Healthcare-associated	Community-acquired					
Primary bacteremia	52 (20.8)	26	17	9					
Skin and soft tissue a	21 (8.4)	10	7	4					
Respiratory	81 (32.5)	48	22	11					
Endovascular	8 (3.2)	3	5	0					
Intrabdominal/pelvic	19 (7.6)	10	4	5					
Urinary	50 (20.1)	19	23	8					
Hepatobiliary	14 (5.6)	5	4	5					
Other ^b	4 (1.6)	3	1	0					
^a Including three episodes second associated infection	ary to burn infections; ^b oth	ers include one bone	and joint infection, two CNS ir	fections, one transfusion-					

6 years, multicentre, Canada,, adult and paeds

Parkins. Infection 2010; 38:25

<u>Outcome</u>

- Very variable
 - Colonisation vs infection
 - Different control groups and definitions
 - A. baumannii complex vs A. baumannii
 - Affected by start of appropriate therapy
- Review of case-control / cohort studies
 - Attributable Mort in hosp 8-23%
 - Attributable Mort in ICU 10-43%
 - Longer LOS in infected / colonised

<u>Outcome</u>

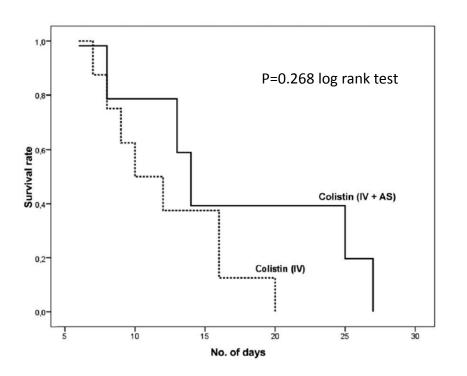
Table 1.Incidence rates and distribution of pathogens most commonly isolated from monomicrobial nosocomial
bloodstream infections (BSIs) and associated crude mortality rates for all patients, patients in intensive care units
(ICU), and patients in non-ICU wards.

	BSIs per	Perc	centage of BSIs	Cru	Crude mortality, %			
Pathogen	10,000 admissions	Total (n = 20,978)	ICU (n = 10,515)	Non-ICU ward (n = 10,442)	Total	ICU	Non-ICU ward	
CoNS	15.8	31.3 (1)	35.9 (1) ^a	26.6 (1)	20.7	25.7	13.8	
Staphylococcus aureus ^b	10.3	20.2 (2)	16.8 (2) ^a	23.7 (2)	25.4	34.4	18.9	
Enterococcus species ^c	4.8	9.4 (3)	9.8 (4)	9.0 (3)	33.9	43.0	24.0	
<i>Candida</i> species ^c	4.6	9.0 (4)	10.1 (3)	7.9 (4)	39.2	47.1	29.0	
E scherichia coli	2.8	5.6 (5)	3.7 (8) ^a	7.6 (5)	22.4	33.9	16.9	
Klebsiella species	2.4	4.8 (6)	4.0 (7) ^a	5.5 (6)	27.6	37.4	20.3	
Pseudomonas aeruginosa	2.1	4.3 (7)	4.7 (5)	3.8 (7)	38.7	47.9	27.6	
Enterobacter species	1.9	3.9 (8)	4.7 (6) ^a	3.1 (8)	26.7	32.5	18.0	
Serratia species ^b	0.9	1.7 (9)	2.1 (9) ^a	1.3 (10)	27.4	33.9	17.1	
Acinetobacter baumannii	0.6	1.3 (10)	1.6 (10) ^a	0.9 (11)	34.0	43.4	16.3	

Treatment

- Colistin
- Tigecycline (not for P. aeruginosa)
- Combination therapy

Tigecycline


Table 3 Summary of treatments and outcomes among patients with MDRAB in the TG and non-TG treatment groups

	Total (n=386)	Group		<i>p</i> -Value ^a
		Non-TG (n=120)	TG (<i>n</i> =266)	
Treatment				
Duration of antibiotic use ^b (days)	10.0 (7.0, 14.0)	12.0 (9.0, 18.5)	8.0 (6.0, 13.0)	<0.001
Switch to other antibiotics ^c	178 (46.1 %)	35 (29.2 %)	143 (53.8 %)	<0.001
Death				
No ^c	211 (54.7 %)	64 (53.3 %)	147 (55.3 %)	0.930
Death related to MDRAB infection ^c	142 (36.8 %)	46 (38.3 %)	96 (36.1 %)	
Death not related to MDRAB infection ^c	33 (8.5 %)	10 (8.3 %)	23 (8.6 %)	
Length of hospital stay ^b (days)	40.0 (26.0, 62.0)	37.5 (25.5, 62.0)	43.0 (26.0, 62.0)	0.526
Length of ICU stay ^b (days)	21.0 (10.0, 41.0)	23.5 (10.0, 46.0)	20.0 (10.0, 40.0)	0.338
Microbiological and clinical outcomes				
Microbiological eradication ^c	17 (4.4 %)	14 (11.7 %)	3 (1.1 %)	<0.001
Favorable (cure or improvement) ^c	244 (63.2 %)	60 (50.0 %)	184 (69.2 %)	<0.001
Unfavorable (stationary or deterioration) c	142 (36.8 %)	60 (50.0 %)	82 (30.8 %)	

Retrospective study, 386 patients (adults) MDR A. baumannii Non TG – all imipenem and sulbactam TG – alone or combination

Lee. Eur J Clin Micro Inf Dis 2013; 32: 1211

Nebulised colistin

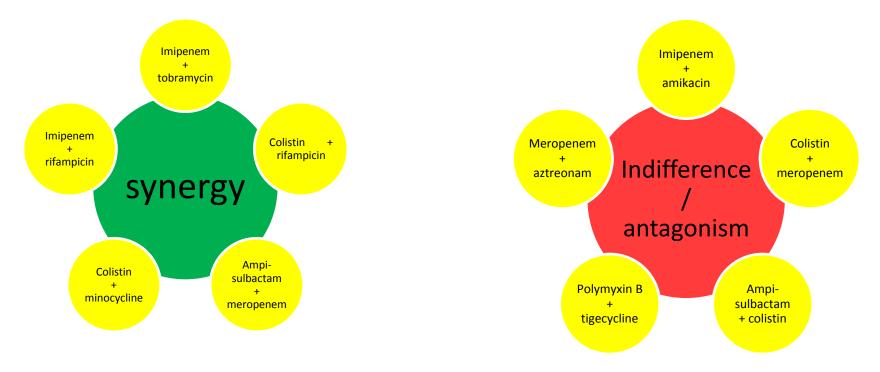
Ventilator-associated pneumonia-related mortality in the 2 treatment groups. AS, aerosolized; IV, intravenous.

- Retrospective case control study
- 43 pts each arm
- Not only *A. baumannii*
- All cause mortality also no difference

Kofteridis. CID 2010; 51: 1238

- 12/15 VAP patients on colistin only died
- 1/8 VAP patients on colistin plus neb colistin died

Study name	Route of administration	% of success
-		
Falagas [15]	inhalation	80% (4 of 5)
Michalopoulos [16]	inhalation + parenteral parenteral	88% (7 of 8) 67% (30 of 45)
Hamer [17]	inhalation + parenteral beta-lactam therapy	100% (3 of 3)
Pereira [18]	inhalation after failing parenteral therapy	93% (13 of 14)
Korbila [19]	inhalation + parenteral parenteral	80% (62 of 78) 61% (26 of 43)
Michalopoulos [20]	inhalation + parenteral (57 of 60 patients) inhalation (3 patients)	83% (50 of 60)


Table 3 Summary of available studies on colistin administered by inhalation versus administered parenterally

Naesens, BMC Infec Dis. 2012; 11:317

- Nebulised colistin may eradicate carriage
- Need more data ?infection control implications

Combination therapy

- Every possible combination seems to have been tried for Acinetobacter
- Colistin / rifampicin seems most popular

Combination therapy - clinical

Outcome	Colistin + Rifampicin Arm (n = 104)	Colistin Arm (n = 105)	<i>P</i> Value	5 2					F
Primary outcome					Colistin + Rifampicin Colistin				
30-d mortality				8. –	constin			ſ	
Yes	45 (43.3%)	45 (42.9%)	.95 ^a	0					
No	59 (56.7%)	60 (57.1%)		Probability of discharge 0.4 0.6			,		
Secondary outcomes				of disc		┍┛┌═┛┘			
Infection-related dea	th at 30 d			ility o					
Yes	22 (21.15%)	28 (26.6%)	.29 ^a	obab 0.4	┙ ┙╴╴╴				
No	23 (22.1%)	17 (16.2%)		2	┎┎┙				
Acinetobacter baum	annii eradication			- 5	_ ₽ [₽] ^{₽+→}				
Yes	63 (60.6%)	47 (44.8%)	.034 ^a		்		Lo	g-rank test (P = .	56)
No	38 (36.5%)	54 (51.4%)							
Median hospitalization length, d (IQR)	41 (26–61)	44 (27–59)	.96 ^b	8 0	15 30	45 days	60	75	90
Development of colistin resistance, %	0	0		No.at Risk 104 105 Figure 3	66 38 63 45 Probability of discharge from hos	20 24 nital by treatmen	13 13 t arm (Kanla	6 8 an-Meier curve)	3 4

Durante-Mangoni. Clin Infect Dis 2013; 57: 349

Combination therapy - clinical

Available clinical evidence doesn't seem to show an advantage of combination therapy for Acinetobacter

Fishbain. CID 2010; 51: 79 Garnaco-Montero. Cur Opin Infect Dis 2010; 23: 332 Karageorgopoulos. Lancet Inf Dis 2008; 8: 751 Towner. J Hosp Infec 2009; 73:355 Petrosillo. Clin Micro Infec 2008; 14: 816

Table 2

Outcome of infection due to different pathogens, according to the specific therapeutic regimen received.

Pathogen	Infection outcome	Regimen							
			COL + MER ^b	COL+PIP/TAZ	COL+SAM	COL+other agents ^c	All regimens		
Acinetobacter baumannii	Cure [n/N (%)]	20/23 (87.0)*	99/118 (83.9) [†]	4/6 (67.7)	8/11 (72.7)	7/12 (58.3)	138/170 (81.2)		
	Deterioration [n/N (%)]	3/23 (13.0)*	19/118 (16.1) [†]	2/6 (33.3)	3/11 (27.3)	5/12 (41.7)	32/170 (18.8)		
Pseudomonas aeruginosa	Cure [<i>n</i> / <i>N</i> (%)]	9/12 (75.0)	24/28 (85.7)	6/10 (60)	1/1	11/17 (64.7)	51/68 (75.0)		
	Deterioration [<i>n</i> / <i>N</i> (%)]	3/12 (25.0)	4/28 (14.3)	4/10 (40)	0/1	6/17 (25.3)	17/68 (25.0)		
Klebsiella pneumoniae	Cure [n/N (%)] Deterioration [n/N (%)]	0 0	11/15 (73.3) 4/15 (26.7)	1/1 0/1	-	1/2 1/2	15/18 (83.3) 5/18 (27.8)		
All pathogens	Cure [n/N (%)]	30/36 (83.3)**	135/162 (83.3) ^{††}	11/17 (64.7)	9/12 (75.0)	19/31 (61.3)	204/258 (79.1)		
	Deterioration [n/N (%)]	6/36 (16.7)**	27/162 (16.7) ^{††}	6/17 (35.3)	3/12 (25.0)	12/31 (38.7)	54/258 (20.9)		

COL, colistin; MER, meropenem; PIP/TAZ, piperacillin/tazobactam; SAM, ampicillin/sulbactam.

Relative comparisons for infections caused by P. aeruginosa and K. pneumoniae were not meaningful because of the small number of cases.

^a Statistically significant differences between groups of patients—COL monotherapy vs. COL+PIP/TAZ or COL+SAM or COL+other agents: *P=0.076 (not significant) for infections caused by *A. baumannii*; **P=0.05 for infections caused by all pathogens.

^b Statistically significant differences between groups of patients—COL+ MER vs. COL+ PIP/TAZ or COL+ SAM or COL+ other agents: [†]P = 0.026 for infections caused by *A. baumannii*; ^{††}P = 0.003 for infections caused by all pathogens.

^c Other agents included aminoglycosides (11 patients), imipenem (10 patients), cephalosporins (7 patients), aztreonam (2 patients) and ciprofloxacin (1 patient).

Falagas. Int J Antimicrob Agents, 2010; 35: 194

Combination therapy - Pseudomonas

 Susceptible isolates – probably limited benefit (beta lactam vs beta lactam plus other)

- Data is limited, studies heterogenous.

- Resistant isolates
 - Unknown, but combination based on in-vitro susceptibility seems appropriate

			Amikacin- Rifampicin-	Amikacin- Meropenem -	Meropenem -	Amikacin-	Amikacin-	Amikacin-	
	Baseline		Polymyxin B	Polymyxin B	Polymyxin B	Meropenem	Rifampicin	Polymyxin B	
Clonal Group	Isolates	inoculum	Mean	Mean	Mean	Mean	Mean	Mean	
6	PA 403	5.10	0.89	2.86	3.20	6.86	8.68	6.27	
7	PA 154	5.33	-	-	0.65	1.75	3.27	1.60	
5	PA 386	5.20	0.00	0.80	9.00	6.12	8.80	4.49	
8	PA 5	5.16	2.15	3.39	3.71	3.71	8.09	2.59	
9	PA 6	5.76	-	-	3.00	3.16	3.72	1.24	
10	PA 15	5.47	-	-	4.22	3.86	8.94	2.12	
3	PA 30	5.19	1.30	0.65	4.44	4.37	5.13	2.84	
4	PA 35	5.55	-	-	2.26	8.08	8.76	1.30	
5	PA 28	4.97	-	-	1.69	3.38	8.16	3.55	
2	PA 47	5.04	0.00	2.83	4.05	5.15	6.54	3.14	
1	PA 48	5.08	4.58	1.45	2.38	3.28	6.96	7.50	
2	PA 14	5.22	0.00	1.00	5.90	4.11	4.54	3.15	
11	PA 14004	5.14	1.94	0.00	4.49	3.42	8.50	6.50	
12	PA 425	5.39	4.19	4.02	4.11	3.70	7.28	4.35	
4	PA 426	5.33	-	-	1.60	4.96	9.12	6.27	
5	PA 377	5.14	2.89	0.00	4.80	6.23	8.78	4.84	
3	PA 3355	5.25	-	-	1.89	4.09	4.82	4.35	
13	PA 31165	5.00	-	-	3.37	1.65	7.27	0.80	
1	PA 2854	5.58	-	-	0.00	6.15	5.19	5.36	
5	PA 37428	5.56	-	-	1.95	8.90	7.47	3.36	
5	PA 19224	5.00	-	-	0.00	4.43	8.08	6.21	
5	PA 50116	5.08	-	-	2.89	0.00	0.00	0.00	

Table 2. 24 hour bacteria burden (log₁₀ CFU/ml) after exposure to two-drug & three-drug combinations.

Bactericidal combinations denoted in bold.

Tze-Ping, PLoS One 2011, 12:28177

So what do I do with my resistant Pseudomonas / Acinetobacter?

• Look at available MICs

- Try combination therapy, esp for Pseudomonas

- Options under investigation
 - Phage therapy, immunomodulation, cathelicidins, radio-immunotherapy, nanoparticles
 - All early, no human data
 - Few / no new antibiotics
- SOURCE CONTROL

The bottom line?

- Very few new antibiotics appearing on the market
- Resistance in community acquired pathogens occurs, poses some challenges
- Hospitals may serve as reservoirs of resistant organisms for the community
- Resistance in hospitals becoming unmanageable...
 - Increased morbidity and mortality
 - Longer hospital stays
 - Increased hospital costs
- Optimal management for many is still unclear

What can we do to prevent this? The biggest challenge

• Antibiotic stewardship

Infection Control

Imported *Klebsiella pneumoniae* Carbapenemase-Producing *K. pneumoniae* Clones in a Greek Hospital: Impact of Infection Control Measures for Restraining Their Dissemination

Aggeliki Poulou,^{a,b} Evangelia Voulgari,^b Georgia Vrioni,^b Grigorios Xidopoulos,^c Aris Pliagkos,^b Vassiliki Chatzipantazi,^c Fani Markou,^a and Athanassios Tsakris^b

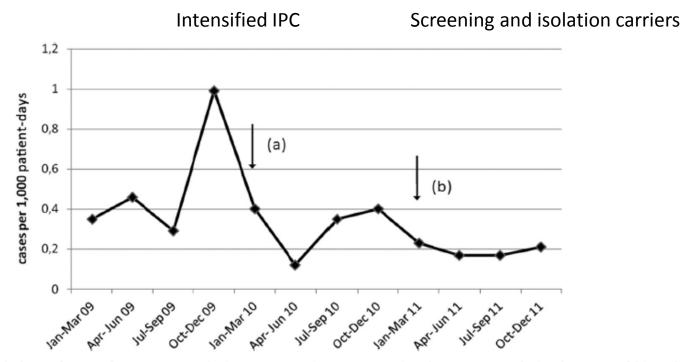
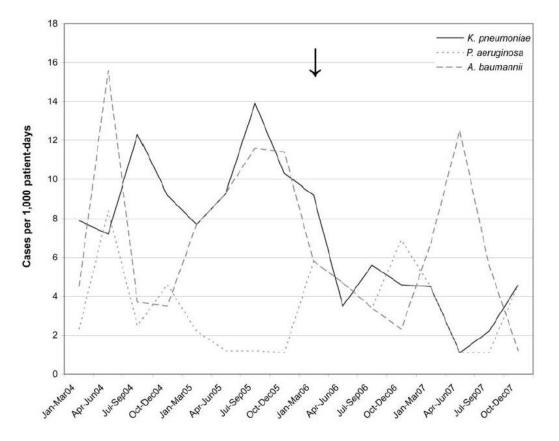



FIG 3 Incidence of new clinical cases due to carbapenemase-producing *K. pneumoniae* per 1,000 patient days per quarter during the 3 years of this study. Arrows a and b indicate the starting points of the additional infection control intervention measures undertaken in January 2010 and January 2011, respectively.

ORIGINAL ARTICLE

Success of an Infection Control Program to Reduce the Spread of Carbapenem-Resistant *Klebsiella pneumoniae*

Sandeep Kochar, MD; Timothy Sheard, MA; Roopali Sharma, PharmD; Alan Hui, PharmD; Elaine Tolentino, MS; George Allen, PhD; David Landman, MD; Simona Bratu, MD; Michael Augenbraun, MD; John Quale, MD

Number of clinical cultures positive for carbapenem-resistant gram-negative bacilli per 1,000 patient-days per quarter. *Arrow,* start of intervention.

Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration

David Landman, Elizabeth Babu, Neha Shah, Paul Kelly, Olafisoye Olawole, Martin Bäcker, Simona Bratu and John Quale*

Table 2. Changes in carbapenem resistance rates in the years 2006 and 2009, and infection control policies at nine hospitals

	Patients with <i>K. pneumoniae</i> with <i>bla</i> _{KPC} per 10000 patient-days		Patients with meropenem-resistant <i>A. baumannii</i> per 10000 patient-days		Patients with imipenem-resistant P. aeruginosa per 10000 patient-days		Educational programmes for	Rectal surveillance cultures performed for	Cohort patients with	Cohort staff caring for patients with	Change in number of infection
Hospital	2006	2009	2006	2009	2006	2009	Gram-negative resistance	carbapenem-resistant organisms	resistant pathogens	resistant pathogens	control staff 2006–09
Hospitals	with a decline	in KPC-possessin	iq K. pneumoni	ae							
1	15.89	1.69	10.59	5.08	4.89	2.37	yes	yesa	no	no	increased
2	4.62	2.39	4.84	4.14	1.10	1.09	no	no	no	no	increased
3	5.81	3.2	0.39	5.95	1.55	3.66	no	no	no	no	unchanged
4	13.06	6.71	11.19	7.22	7.09	6.19	no	no	no	no	unchanged
5	9.73	5.94	6.63	6.16	5.75	6.58	yes	no	yes ^b	no	increased
6	5.23	2.43	7.32	2.44	3.83	5.57	yes	no	no	no	decreased
Hospitals	without a decl	ine in KPC-posse	ssing K. pneum	oniae							
7	5.87	7.21	7.27	19.20	5.03	11.42	yes	no	yes ^b	no	decreased
8	14.00	24.94	18.07	22.06	9.94	24.46	yes	no	yes ^b	no	unchanged
9	5.50	13.80	9.85	9.10	1.74	4.11	no	no	no	no	increased

Better understand the burden of AMR in children More experience / evidence to guide treatment options

Practice antimicrobial stewardship

Focus on infection control

THE END THANK YOU