

UNSATURATED MODELLING AND COVERS FOR MINE RESIDUE

WASTE ACT REQUIREMENTS

GROUNWATER IMPACT MODELLING STUDIES

Receptor (i.e. down-gradient monitoring boreholes)

Pathway (Groundwater)

Geohydrological study Groundwater modelling

SEEPAGE IMPACT PREDICTION

SEEPAGE IMPACT MODELLING

GROUNDWATER SEEPAGE IMPACT MODELLING

SEEPAGE IMPACT MODELLING

Leachate concentration (quantity component) Contaminant mass (kg) in facility Contaminant mass that will seep over time Seepage load (intensity component) Rate contaminant leaching (kg/d) Impact on groundwater quality over time Contaminant mass / seepage load (buffer component) Duration of seepage impact (yr) Period seepage mitigation measure(s) to function

COVER OPTIONS

COVER OPTIONS FOR MINING RESIDUES (relevant to South Africa)

- Soil cover (based on principle of store and release cover)
- Clay capping (based on principle of watershedding cover)
- Geosynthetic cover (based on principle of barrier system)

GOOD COVER DESIGN PRINCIPLES

- Simplest and most cost-effective *that*
- Meet environmental requirements and
- Perform in the long-term
 - Sustainable cover functioning
 - Cover resilience (extreme events, droughts, fire, climate change)
- Multi-functional cover
 - Water resource protection (surface and groundwater)
 - Landscape functioning
 - Ecological functioning
 - Nuisance related (aesthetic value, dust, vapour)
 - Other
- Optimised land use potential
- Potential to recover construction costs
 - Reduced pump and treatment costs
 - Reduced post closure care and maintenance
 - Higher land use potential / land capability
- Maximum use of site available materials
 - Soils
 - Softs
 - Rock-softs or rock soils mixtures

Long-term performance more relevant than initial performance considering period required for seepage mitigation

WATERSHEDDING (clay capping) COVER

Moisture losses through increased runoff

Concept Shed rain of cover by limiting rain infiltration

MR, 1998 capping specifications

Arid and semi-arid climate Desiccation cracks and associated preferential flows Increased moisture ingress in long-term

STORE AND RELEASE (evapotranspirative) COVER THICK SINGLE LAYER

Moisture losses mainly through plant transpiration and soil evaporation

Concept

- Retain and store infiltrated rain during rain events
- Moisture losses through plant transpiration and evaporation between rain events

Maximise plant transpiration

- Vigour vegetative growth
- Deep rooting system (important for wet years)

STORE AND RELEASE (evapotranspirative) COVER DUAL LAYER

Rain

Store and release laver

Low permeable – high moisture retention

layer

Moisture losses mainly through plant transpiration and soil evaporation

Concept

- 2nd Low permeable-high moisture retention layer temporally store deep percolated moisture during high rainfall events
- Upward movement of moisture from 2nd layer into rooting zone in 1st layer during drier period for plant transpiration

Not flow limiting layer

Not suitable for steep slopes (i.e. outer slopes) due to risk for lateral flow

CAPILLARY BREAK

Concept

Requires strict construction quality assurance

- Capillary breaker material grading specifications
- Abrupt boundary transition (geotextiles to create abrupt effect)
- Effective for convective (capillary-flow) salt/acid transport
 Not effective for advective (due to concentration gradient) salt/acid transport

Prevent/limit upward movement of salts and acids into growth medium

GEOSYNTHETIC COVER

Concept Intercept infiltrated rain with engineered barrier system

CLIMATE AND COVER TYPES (IGARD, 2009)

TERRASIM

CLIMATE AND COVER TYPES (IGARD, 2009)

- Steelpoort
- West and East rand
- Mpumalanga highveld

- Mpumalanga escarpment
- Kwa-Zulu Natal coalfields
- Kwa-Zulu Natal coast

etation) Moisture storage capacity of store and release cover too low for high rainfall

Border case – Determination of site material hydraulic properties important to determine if store and release or watershedding cover

MOISTURE INGRESS PREDICTION

UNSATURATED FLOW MODELLING

(Groundwater)

COVER PERCOLATION (Moisture ingress into facility)

SEEPAGE AT FACILITY FOOTPRINT (Climate equilibrated – i.e. receded phreatic surface)

EFFECT OF COVER AGING

EFFECT OF POOR COVER CONSTRUCTION

FACILITY SEEPAGE PREDICTION

INTEGRATED SOURCE-TERM MODELLING

Integrated unsaturated flow-geochemical modelling

Lower ingress rates \rightarrow lower degree of saturation higher acid rock drainage \leftarrow higher oxygen ingress

Lower ingress rates \rightarrow lower moisture content higher pore water concentrations (leachate quality)

Liner leakage modelling

- Geosynthetic cover or liner system
- Based on:
 - Liner and drainage systems configuration
 - Properties of various layers
 - Level of construction quality assurance
 - Reduction in drain layer permeability
 - Geomembrane degradation rate

Horizontal saturated pathway (Groundwater)

PROPOSED CAPPING STANDARDS

Infiltration cap

20 cm Growth medium

45 cm Cohesive soil (3 x 150 mm layers)

Capillary break layer

STORE AND RELEASE COVER COMBINATION

Dual layer for upper surface

30 cm low PI clayey Soft plinthic / completely weathered softs

Not suitable for steep slopes due to risk for lateral flow

Thick single layer for slopes

Usually insufficient materials volumes to construct required thickness over total facility

SEEPAGE VOLUME

LEACHATE QUALITY

LEACHATE QUALITY

SEEPAGE LOAD

RECEIVING GROUNDWATER SEEPAGE IMPACT PREDICTION

VADOSE ZONE MODELLING

ERRASIM

(Groundwater)

LEACHATE QUALITIES REPORTING TO GROUNDWATER TABLE

SEEPAGE LOADS REPORTING TO GROUNDWATER TABLE

PREDICTED AND MONITORED RECEIVING GROUNDWATER QUALITIES

RECEIVING GROUNDWATER CONCENTRATION LIKELY CASE

RECEIVING GROUNDWATER CONCENTRATION 90th PERCENTILE

ADVANTAGES OF SPR-UNSATURATED MODELLING

SITE SPECIFIC CONDITIONS

- Precipitation, rain distribution, climate
- Properties of materials available at site
- Geology, vadose zone and groundwater characteristics

FACILITY SPECIFIC CONDITIONS

- Increasing facility footprint/height, final rehabilitated topography
- Geochemistry
- Operational decommission rehabilitation after care and maintenance schedule/time table

ADVANTAGES OF SPR-UNSATURATED MODELLING

POST CLOSURE SPECIFIC CONDITIONS

- Optimal use of site available materials for rehabilitation
- Vegetation type, realistic vegetation conditions
- Sustainable cover functioning and cover resilience aspects (long-term cover performance)
- Impact of cover degradation / aging
- Impact of liner degradation and reduction in drainage layer permeability

CLIENT SPECIFIC

- Post closure objectives and commitments
- Standard of cover and liner construction quality that can be achieved
- Cost implication

CONDITIONS OF INFORMATION PROVIDED

PRESENTATION CONTENTS

The content of this presentation is intended to be instructive and illustrative only, and is not intended to be used or applied in actual situations or assignments.

LIABILITY WAIVER

While all the reasonable care has been taken in preparing the content of this presentation, Terrasim CC and its members make no representations, or give any warranties, express or implied, or accept any responsibility or liability as to the accuracy, sufficiency of completeness of the information made available in this presentation.

No part of this presentation may be reproduced, distributed, or transmitted without the prior written permission of Terrasim CC.

Albert van Zyl (Pr. Sci.Nat.) Terrasim cc Cell: 082 211 2152 E-mail: avanzyl@terrasim.co.za Web: www.terrasim.co.za Linkedin: Albert van Zyl *(Environmental soil scientist)*