

SOURCE - PATHWAY - RECEPTOR MODELLING

OVERVIEW

- Source-Pathway-Receptor assessment
- Field investigations
- Conceptual site models
- Numerical modelling
- Outcomes and managing uncertainty

SOURCE-PATHWAY-RECEPTOR ASSESSMENT

S-P-R connection

- Current and potential contamination sources
- Pathways that go all the way from the sources to the receptors
- Who and what will be impacted (receptors)

Significance/impact

SPR: Fit for purpose

Multi- and transdisciplinary solutions

FIELD INVESTIGATIONS

The results are only as good as the weakest link in the chain of characterization, which is often the sampling

Statistical fundamentals for sampling

- Accuracy how close a measured value is to the true value
- Precision measure of variability
- Sampling procedure
 - Haphazard sampling
 - Based on convenience
 - Fundamentally flawed
 - Search sampling
 - Know history of site
 - Judgement (biased) sampling
 - Sampling is random but not statistically random
 - Sampling units are chosen based on what appears to be representative
 - Often more representative than probability sampling when n is small (1-3)
 - Probability sampling
 - Samples have an equal change of being chosen
 - Good for source materials, such as soils and sludges

Non intrusive investigations

- **Soil vapour survey** (volatile compounds)-VOCs that were released into the subsurface will volatilise into soil gas and can, under favourable conditions, be detected through a soil vapour survey. Although an indirect method, can be an important tool in selecting soil and groundwater sample positions to delineate the contaminant plumes
 - Rapid surveys using Photo Ionisation Detector (PID)
 - Thermal Desorption Tubes (TDT's)

Non intrusive investigations

Geophysical Surveys for optimal positioning of monitoring boreholes

Magnetic, electromagnetic, high resolution resistivity and gravity aiming to map subsurface structures.

The geophysical data is incorporated into the site conceptual model, which will guide the positions of intrusive investigative points.

Intrusive assessments

- Site specific field investigations are the basis of any detailed site conceptual model and the monitoring and measurement of certain parameters (i.e. hydraulic conductivity and seasonal water level response) are crucial in understanding site conditions and designing remedial/management options.
- A screening/detailed site investigation phase is conducted to fill gaps and delineate contaminant plumes

May 24, 2017

Geochemistry

- Sampling strategy/Material representatively
- Laboratory testwork
- Pit water quality predictions
- In-pit disposal of discard
- Co-disposal facilities
- Storage of tailing/water underground

Geochemistry - Engineering

- Groundwater
 Risk
 Assessment for
 liner relaxation
 GN. R. 632
 Engineering
- Engineering liner design

Geochemistry - Engineering

- Type 3 waste (GN R.635) lower risk as LCT ≤ LCT0
- Unsaturated flow modelling

 Table 1: Seepage volume to groundwater as a function of compacted layer hydraulic conductivity

Scenario	K (cm/s)	K (m/day)	Seepage as % of MAP
1	1.0 x 10 ⁻⁶	8.22 x 10 ⁻⁴	16
2	1.0 x 10 ⁻⁷	8.22 x 10 ⁻⁵	4.5

- Source-term modelling of As & Mn concentrations
- Groundwater contaminant transport modelling to quantify impacts

CONCEPTUAL SITE MODELS

Why do we need a Conceptual Site Model?

- Stimulate discussion amongst team members
- Simple and made to be understood
- Explain complex problems, dividing them into pieces
- Updated as new information becomes available
- Necessary base for any remedial design
- If NMA is an option a CSM is needed that stands the test of time

Key Elements of a Conceptual Site Model

- Site history
- Potential source zones and contaminants of concern
- Pathways for contaminant transport
- Receptors
- Geology and stratigraphy
- Aquifers and aquitards
- Groundwater levels and elevations
- Hydraulic gradients
- Physical and hydrogeological Boundaries
- Contaminated soil levels
- Plumes of contamination

5/24/2017

SCM

NUMERICAL MODELLING

Source-term characterisation link to groundwater and receptor study

Numerical modelling: Source

	Input	Model Component	Output	
Source	 Area and height estimates low, likely or high (m²) for different areas Recharge rate (m³/year) 5th, 50th and 95th from output Total (mg/kg) and soluble (mg/l) quality for F⁻ of soil and waste material. 	Probabilistic unsaturated flow and transport modelling – Consim and SVFlux:	 Declining seepage quality Volume (m³) and mass (tons) estimates for each facility. Loads (kg/year) to the environment from time₀ to time₁ 	
	 Rainfall data for (mm) more than one weather stations 	Cross-correlated probabilistic modelling to generate rainfall sequences	 Cross-correlated rainfall sequences (mm/day and mm/month) for 5th, 50th and 95th percentile years. 	

Numerical modelling: Pathway

	Input	Model Component	Output		
	 Cross-correlated rainfall sequences (mm/day and mm/month) for 5th, 50th and 95th for typical years. Groundwater concentrations for CoCs (mg/l). 	Recharge calculation - Calculate site specific recharge.	 Recharge rate (m³/year) for 5th, 50th and 95th percentile estimate. 		
Pathway	 Recharge rate (m³/year) for 50th percentile. Conceptual understanding of lithology. Hydraulic properties of geological lithology layers (m/s). Declining seepage loads of CoC for each facility (kg/year) from time₀ to time₁. Groundwater borehole water levels (masl). Groundwater quality concentrations (mg/l). 	Groundwater flow and transport – FEFLOW	 Loads reporting to the receptor for CoC (mg/l) for likely case. Predicted borehole concentrations (mg/l). 		
	 Sediment quality in storm water system (mg/kg) Water quality in storm water system (mg/l). Receptor sediment quality (mg/kg). Receptor dimensions height, width and length (m). 	Surface water quality evaluation	 Contribution to water quality at receptor for CoC (mg/l). Potential contribution to sediment quality (mg/kg). 		

Numerical modelling: Receptor

Receptor	 Groundwater loads reporting to the receptor over time Contribution of surface water to water quality at receptor for CoC. Potential contribution of sediment loss from the site to sediment quality in receptor (mg/kg) Aquatic toxicity tests results. Sediment toxicity screening tests. Sediment quality (mg/kg). Receptor water quality (mg/l) 	Ecological impact characterisation and prediction in the receptor.	•	Ecological characterization. Potential future ecological hazard rating.
	• Receptor water quality (mg/l).			

Aquatic bioassays (battery of tests)

Toxicity test		Effect period	Exposure period	Endpoint	Detection limit (%)	Standard
<i>Vibrio fischeri</i> luminescence bacterial test		Acute/ Short term	30 minutes	% growth inhibition or stimulation, EC20 and EC50 value	20	EN ISO
<i>Selenastrum capricornutum</i> (algal) growth inhibition test		Acute/ Short term	72 h	% growth inhibition or stimulation, EC20 and EC50 value	20	OECD
<i>Daphnia pulex</i> (waterflea) lethality test		Acute/ Short-term	24 and 48 h	% lethality, LC10 and LC50 value	10	US EPA
<i>Poecilia reticulata</i> (fish) lethality test		Acute/ Short- term	96 h	% lethality, LC10 and LC50 value	10	USEPA

Sediment Bioassays

- Heterocypris incongruens: Ostracod crustaceans are ecologically important members of the meiofauna of freshwater sediments. Has a cosmopolitan distribution and can be found in diverse freshwater benthic habitats in all continents.
- *Chironomus caffrarius*: Indigenous species found through out South Africa. Tolerant of contaminated sediments and low dissolved oxygen environments. Utilises a stable laboratory monoculture.
- Direct contact with sediment: Burrowing and ingestion = Bioavailable fraction assessment

Terrestrial Bioassays

Three commercially important test species have been selected for the bioassay due to their rapid germination and growth of roots and shoots, which allow observations and scoring after only 3 days.

- Lepidium sativum (Water cress)
- Sinapis alba (White Mustard)
- Sorghum saccharatum (Sorghum)
- Indication of soil, contaminated waste etc effect on <u>seed germination</u> and growth

OUTCOMES AND MANAGING UNCERTAINTY

Uncertainty

Reality – Complex Problems

Surviving progress – Directed by Harold Crooks and Mathiue Roy, 2011. Canada

Residual risk

Dr Heidi Snyman (Pr. Sci.Nat, SFWISA, FIWA) Golder Associates Africa (Pty) Ltd. Technical Director: Remediation Technologies Cell: 082 888 3016 E-mail: hsnyman@golder.co.za Web: www.golder.com