

IMPLEMENTATION OF THE WASTE RESOURCE OPTIMISATION AND SCENARIO EVALUATION (WROSE) MODEL: A WASTE MANAGEMENT DECISION MAKING TOOL FOR SOUTH AFRICAN MUNICIPALITIES

Prof. Cristina Trois SARChI Chair in Waste and Climate Change

Acknowledgements

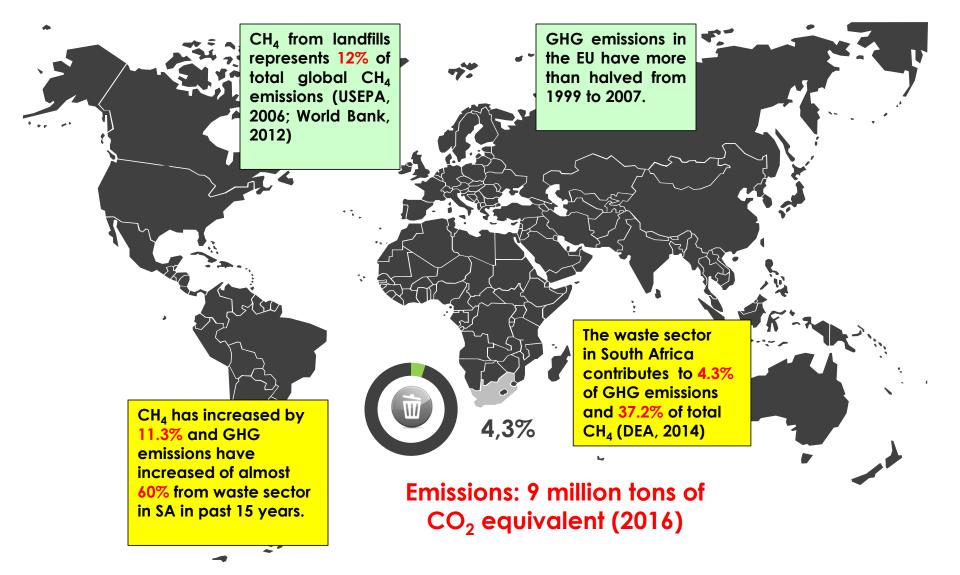
- NRF
- SARCHI Waste and Climate Change
- eThekwini Municipality
- DSW

science & technology

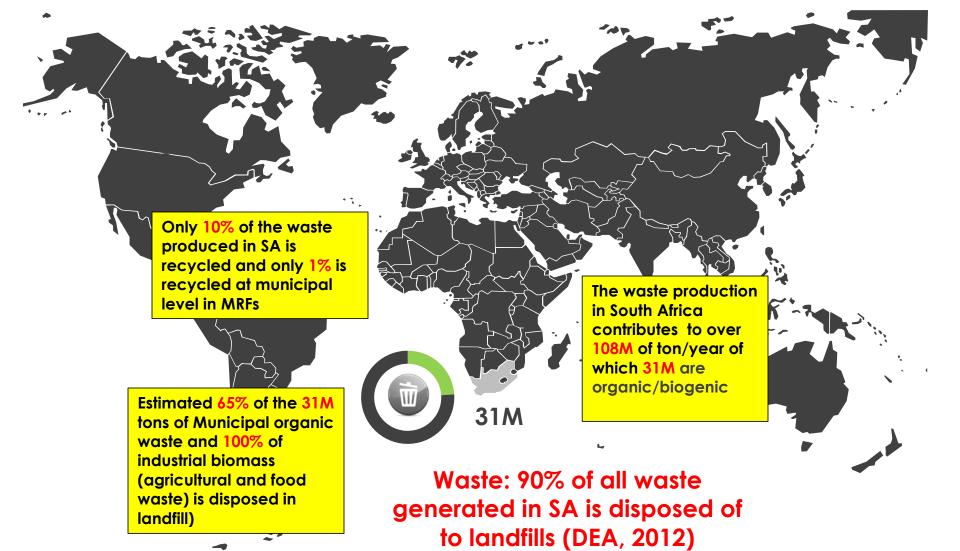
Department: Science and Technology REPUBLIC OF SOUTH AFRICA

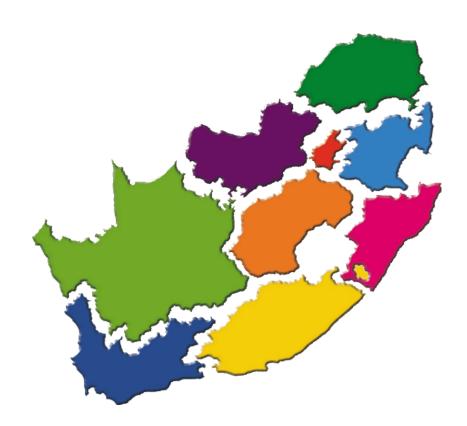
Outline


Waste management in an emerging economy is a complex socio-technical challenge...


Namaste SA

Our Grand Challenge



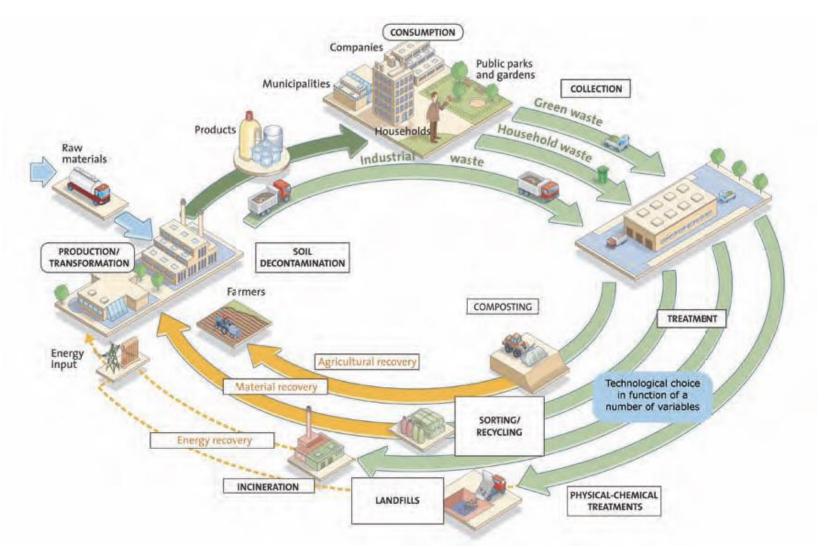

Waste and Climate Change in SA - GHG

Waste and Climate Change in SA - WASTE

Waste Management in South Africa

- Challenge of meeting high standards in service delivery with limited resources
- Lack of environmental control systems and appropriate legislation
- Limited know-how, indiscriminate dumping
- Lack of reliable data on waste streams and GHG emissions indicators
- Poor environmental and waste awareness of the general public

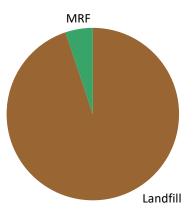
Golden rules to build the sector

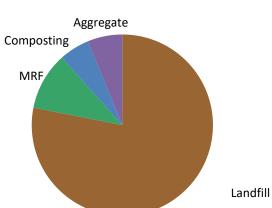


WASTE

RESOURCE

Component	Biodegradable?	Combustible?	Recyclable?	
Paper & Card	✓	\checkmark	\checkmark	
Yard / Green	✓	\checkmark	✓	
Kitchen	✓	\checkmark	\checkmark	
Wood	✓	√	\checkmark	
Textiles	(√)	√	\checkmark	
Metals	×	×	✓	
Glass	×	×	\checkmark	
Plastic	×	√	\checkmark	
Stones / fines	(×)	×	(√)	

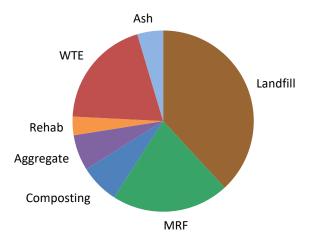

Integrated Waste Management System


From ISWA White Paper – Waste and Climate Change, 2009

Developing a Landfill Waste Volume Reduction Strategy

The eThekwini Municipality

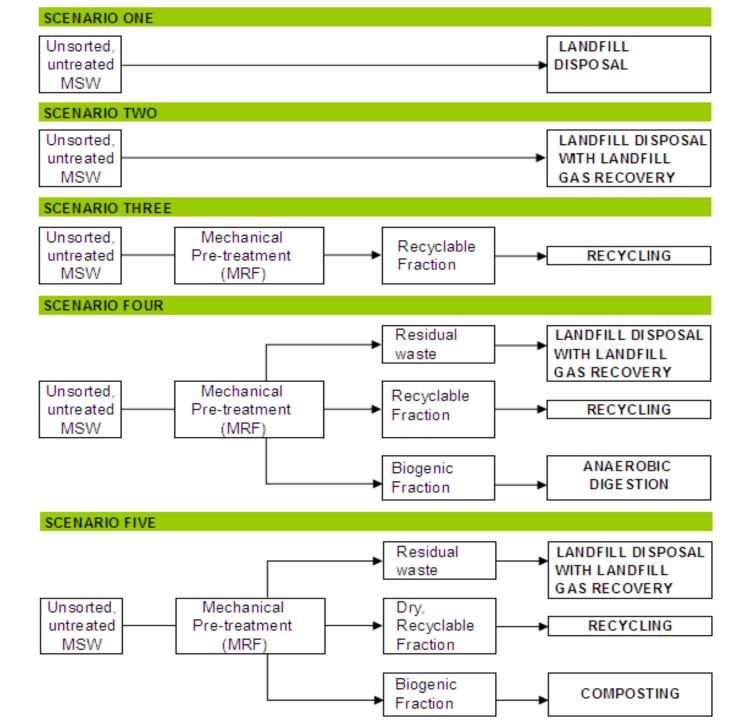
Phase 1A Volume Distribution



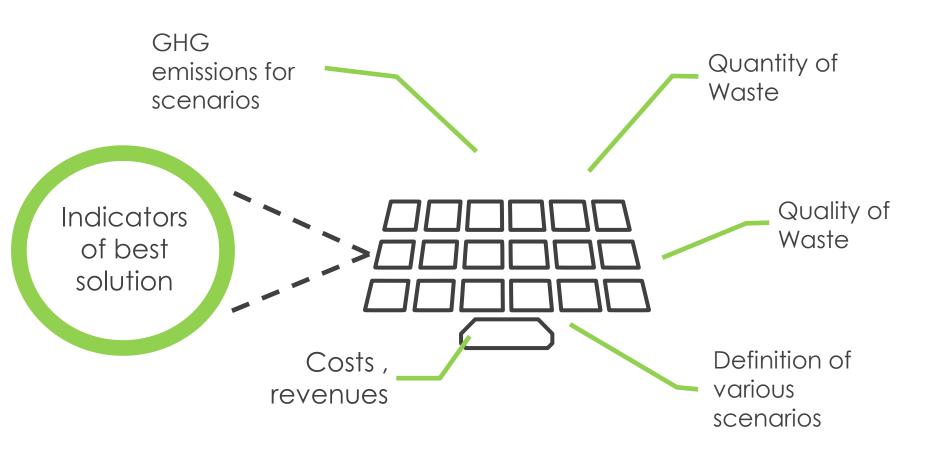
Phase 1B Volume Distribution

Phase 1C Volume Distribution

Phase 2A Volume Distribution

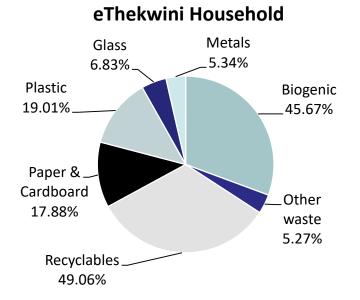


What is the W.R.O.S.E model?

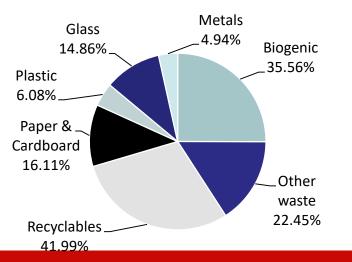

- W.R.O.S.E. = Waste & Resource Optimisation Scenario Evaluation model
- □ Is a Zero Waste decision support tool
- WM Strategies: landfill, landfill gas recovery, recycling, AD and aerobic composting, Waste to Energy, biogas upgrading
- Evaluates GHG emissions reductions from applying waste diversion strategies
- Microsoft Excel Spreadsheet Interface

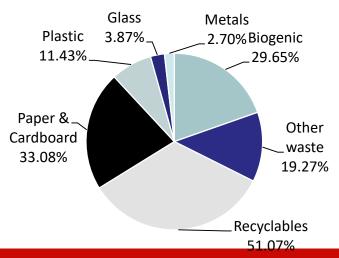
The Waste Resource Optimization and Scenario Evaluation Model (WROSE)


- Developed by UKZN to assist South African municipalities and the private sector in achieving the zero waste targets and apply appropriate waste strategies
- WROSE was initially developed with 5 scenarios selected as most relevant/appropriate to waste management for SA Municipalities.
- Each technology and scenario in WROSE aims to aid the waste managers in determining a final decision
- WROSE outcomes are case specific strategies and scenarios can be tailored to suite individual municipal needs

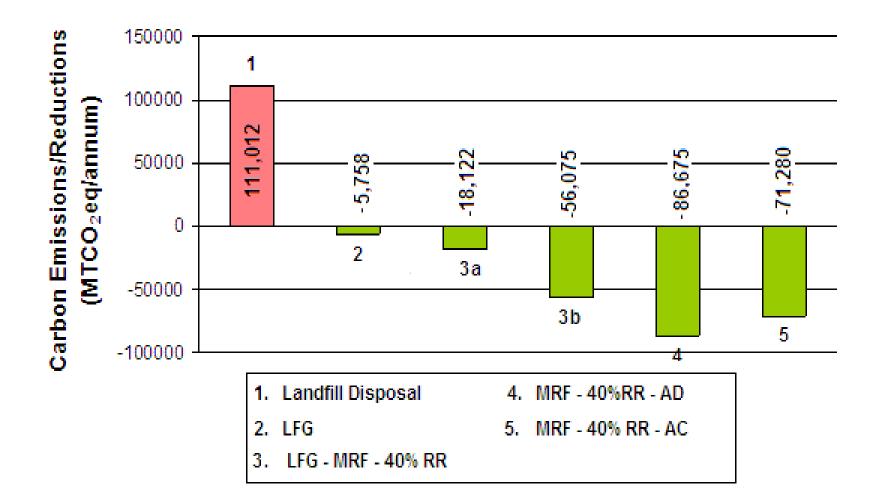

WROSE Model Framework

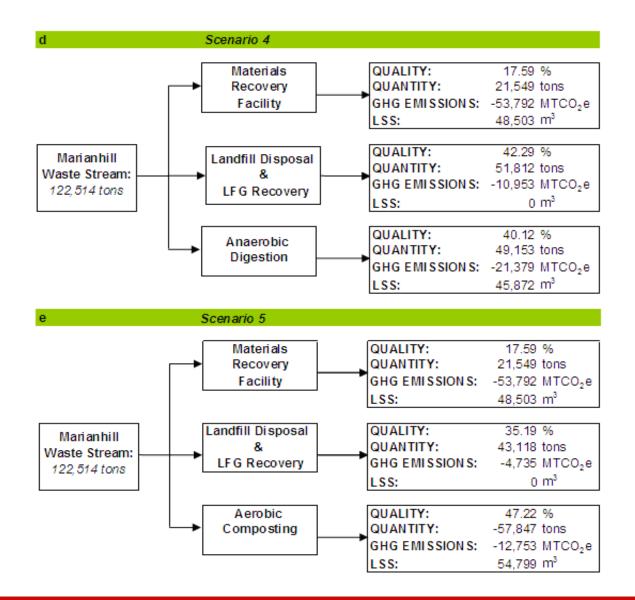
WROSE Model Input Screen


Comparison of Waste Streams


UMDM Household Metals Glass 5.18% 7.00% Plastic Biogenic 8.65% 34.38% Paper & Cardboard 14.75% Other waste Recyclables_ 30.04%

35.58%


eThekwini Commercial


UMDM Commercial

Assessment of Marianhill Landfill

Marianhill Waste Stream – Landfill airspace savings

Marianhill Economic Analysis

Strategy	Quantity Managed/ Produced	Rate	Capital Cost (R)	Operating Cost (R/annum)	Income/Savings (R/annum)
1. LANDFILL DISPOSAL & LFG RECOVERY					
Landfill Gas Recovery System	0.50 MW		1,100,000		
Landfill Disposal operations	122,514 tons	138 R/ton		16,906,932	
Landfill Gas Recovery operating costs	7,051,800 kWh	0.018\$/kWh		866,758	
Sale of Electricity	7,051,800 kWh	0.047\$/kWh			2,263,201
Certified Emission Reductions	5,758 MTCO2e	14\$/MTCO2e			550,458
Total			1,100,000	17,773,690	2,813,659
2. MRF & RECYCLING					
Materials Recycling Facility Capital Cost	385 tpd	30,668\$/tpd	33,848,875		
Materials Recycling Facility Operating Cost	385 tpd	2,815\$/tpd		9,899,276	
Sale of Recyclables	21,549 tons	R/kg			19,598,660
Landfill airspace savings	47,122 m ³	62.5R/m ³			2,945,125
Total			33,848,875	9,899,276	22,543,785
3. ANAEROBIC DIGESTION					
Anaerobic Digestion Plant Capital Cost	49,153 tons	15.24\$ million	104,066,340		
Anaerobic Digestion Plant Operating Cost	49,153 tons	28.2\$/ton		9,465,084	
Sale of electricity	18,128,413 kWh	0.047\$/kWh			5,818,124
Sale of Compost	29,492 tons	250R/ton			7,372,950
Certified Emissions Reductions	21,379 MTCO2e	14\$/MTCO2e			2,043,797
Landfill airspace savings	45,872 m ³	62.5R/m ³			2,867,000
Total			104,066,340	9,465,084	18,101,871
4. AEROBIC COMPOSTING					
Composting Facility Capital Cost	57,847 tons	2E+06R/180tpd	3,066,667		
Composting Facility Operating Cost	57,847 tons	152.05R/ton		9,123,000	
Sale of compost	43,385 tons	250R/ton			10,846,313
Certified Emissions Reductions	12,753 MTCO2e	14 \$/MTCO2			1,219,182
Landfill airspace savings	54,799 m ³	62.5R/m ³			3,424,938
Total			3,066,667	9,123,000	15,490,433

Dube Tradeport

Dube Trade Port - AgriZone

Dube Trade Port - Aerotropolis

Dube Trade Port – Agri-Zone

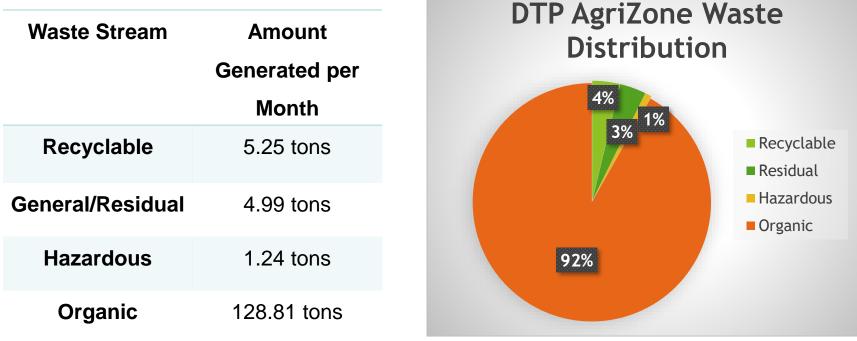
- Approx. 40 tons of fresh produce weekly
- ✤ Large quantities of waste
- ✤ Large organic fraction
- Phase 1:
 - 16Ha of greenhouses
 - Post-harvest pack-house
 - Central packing and distribution centre
 - > Nursery
 - Dube AgriLab plant culture laboratory
- Phase 2: 90Ha Expansion
 - Greenhouses and tunnels
 - Packing and distribution facilities
 - Waste-to-energy operation

Aims and Objectives

• To investigate the feasibility of establishing an electricity biodigester at the AgriZone of Dube Trade Port.

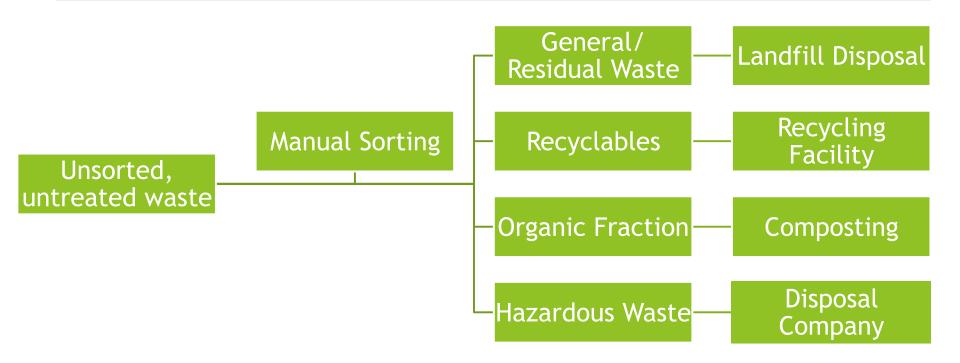
<u>Objectives:</u>

- Conduct a full waste stream analysis at the AgriZone
- Characterise the organic fruit and vegetable waste
- Determine the biochemical methane potential of organic fruit and vegetable waste for anaerobic digestion
- Analyse various waste management scenarios using the Waste and Resource Optimisation Scenario Evaluation (WROSE) model
- Evaluate the best waste management scenario using various indicators of sustainability


Waste Streams

- ✤ General waste
- Recyclables
- ✤ Organic waste

- * Hazardous waste
- Wastewater
 Treatment Works


AVERAGE WASTE VOLUMES :

PHILOSOPHY:

Separate as much waste at each source, conduct further separation at a central facility and finally dispose at a licensed facility.

Waste management strategy (II)

- Sorting of waste streams conducted at the source
 - Allocated bins for each waste stream
 - > Further separation conducted by external companies
 - Disposal of each waste stream handled by respective companies

Waste Disposal Companies:

- Living Earth All organic waste
- > RE-Ethical Recyclables, general and hazardous waste
- On average 50% of waste generated is recycled and reprocessed
- The other 50% consists of a small quantity of hazardous waste and residual municipal solid waste
- 100% of organic waste is recycled into compost

Farmwise Pack houseDay-to-day Greenhouse operationsAV/G R

Sources of Recyclable Waste

- Packing and distribution centre
- Dube AgriLab

Cafeteria

RECYCLABLE WASTE MATERIALS:

SOURCES OF RECYCLABLE WASTE:

AgriZone offices

•

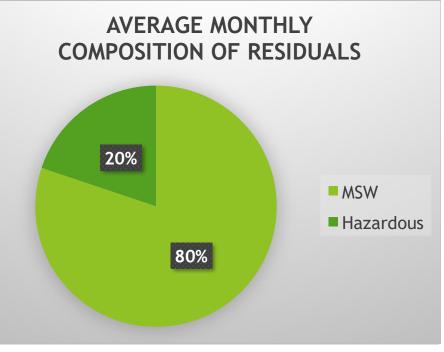
•

- Scrap cardboard & office paper
- Tetrapak post-consumer
- LD film, plastic & strapping
- HD bottles
- PP Bag & PET
- PVC
- Scrap metal & steel cans
- Glass
- CMW
- Foam

RECYCLABLE

AVG RECYCLABLE COMPOSITION per MONTH 2% 7% 3% 1% Scrap Cardboard LD Plastic PP Bag PP Pet 87% Foam

Sources of Residual Waste


Sources of Residual Waste from Recycling:

- AgriZone offices
- Cafeteria
- Farmwise Pack house
- Day-to-day Greenhouse operations
- Packing and distribution centre
- Dube AgriLab

Composition:

- 80.2% Municipal Solid Waste
- 19.8% Hazardous Waste

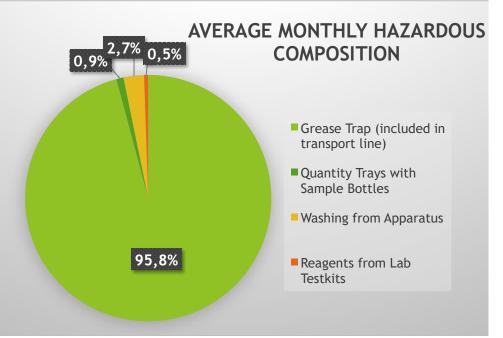
RESIDUAL

Sources of Hazardous Waste

SOURCES OF HAZARDOUS WASTE:

- Oil Separators
- Water Testing Laboratory
 - Washing apparatus
 - Diluted testing chemicals
 - Concentrated testing chemicals

Reverse Osmosis Process


Chemicals

HAZARDOUS WASTE MATERIALS:

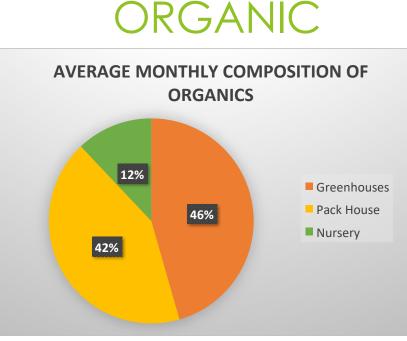
- 95.8% Grease trap (incl. in transport line)
- 0.9% Quantity trays with sample bottles
- 0.5% Reagents from lab test kits
- 2.7% Washing from apparati

UNIVERSITY OF

Wastewater Works Operations

- Plant running at 25% recovery rate 8hrs/day, 5 days a week.
- NO Sludge produced. Wastewater is high in COD, electrical conductivity and sodium content.
- Source of wastewater:
 - > Partial airport effluent
 - > Run-off from leached greenhouse irrigation

 Dilute wastewater with rainwater, which is then used to irrigate nearby sugarcane fields for Tongaat-Hullet Co.


Sources of Organic Waste

- Organic waste of an acceptable standard is sent to local underprivileged schools.
- Excess waste is sent for composting.
- Sources of organic waste:
 - > Farmwise Pack House
 - > Greenhouse Produce
 - Occasional garden refuse from Nursery

Composition and variability:

- Various fruit and vegetables
- Greenhouse operation stays constant throughout the year but the type of plant waste varies daily
- Range of products at the pack-house remains constant throughout the year but the exact composition varies daily

- Greenhouses operated at 75% capacity in 2014, 2015 and 50% in 2016 and 2017.
- Maximum waste volumes are approximately 460m³/month at full capacity.

- Pack house

- Greenhouses
- Mix samples
- Inoculum from WWTP
- BMP tests on all the above

RESULTS

METHODOLOGY

- The waste characterisation tests conducted on fruit and vegetable samples showed favourable characteristics of the feedstock for AD.
- Main disadvantage: high acidity of the samples
- Rapid acidification and accumulation of VFAs hindered methane production and resulted in an initial lag phase of approximately 20 to 30 days before the system reached full methanogenesis

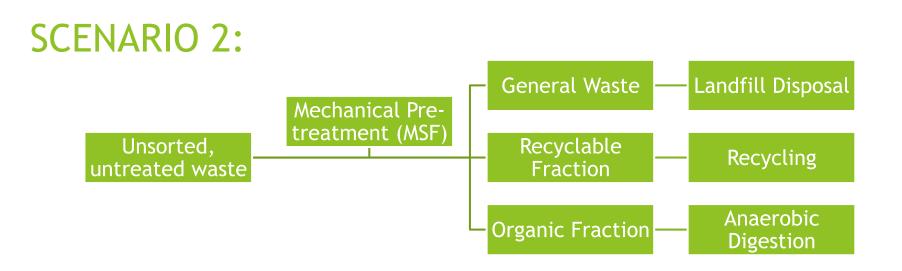
INSPIRING GREATNESS

Experimental Methods and Results

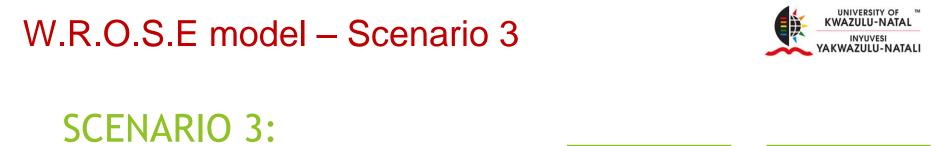
W.R.O.S.E model – Scenario 1

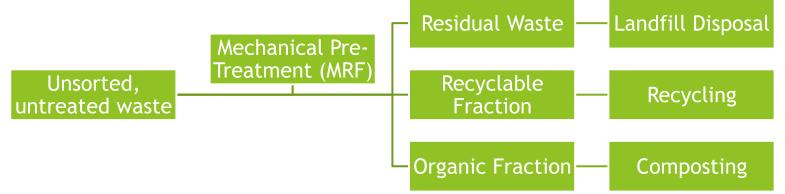
SCENARIO 1:

Unsorted, untreated Waste

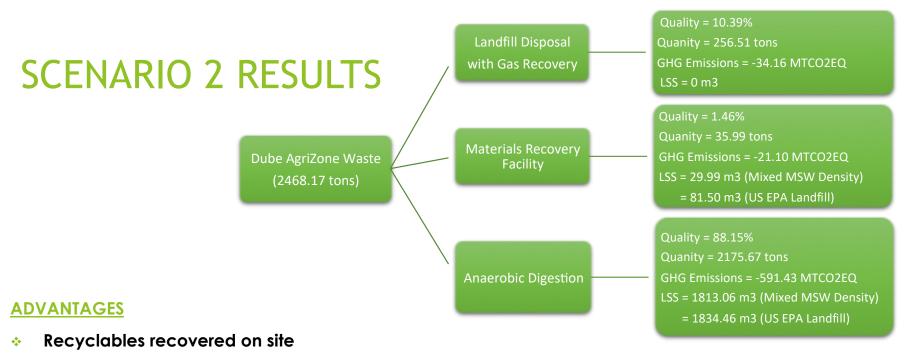

Landfill Disposal

- Baseline scenario: No waste management strategy employed on site
- All waste sent to landfill
- No sorting
- No pre-treatment




W.R.O.S.E model – Scenario 2

- Future waste management strategy at Dube AgriZone
- Martial recovery facility for dry fraction
- 0.5MW electricity bio-digester on site for organic fraction



- Current waste management strategy at Dube AgriZone
- Basic sorting of waste streams conducted at source
- Recyclables and General waste recycled/disposed of by RE-Ethical
- Organic waste composted by Living Earth

W.R.O.S.E model – Scenario 2 Results

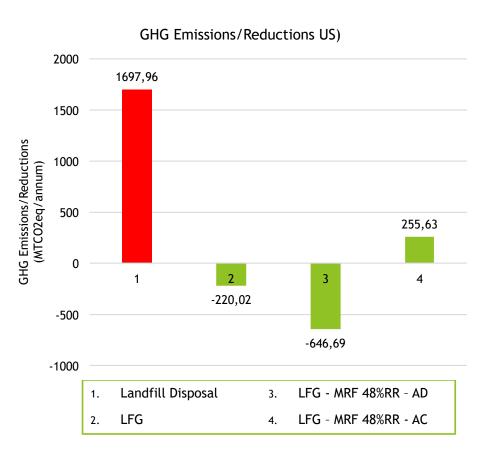
- No external costs from waste companies
- Job creation
- Degradation of organic waste occurs in a controlled environment
- Various benefits from by-products produced in the AD process
- AgriZone becomes an independent power producer
- Highest overall GHG reduction

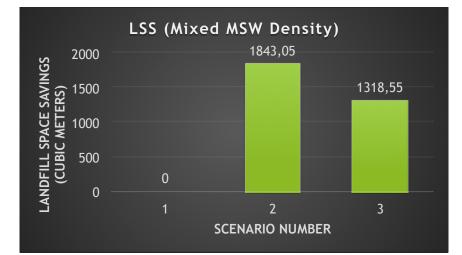
DISADVANTAGES

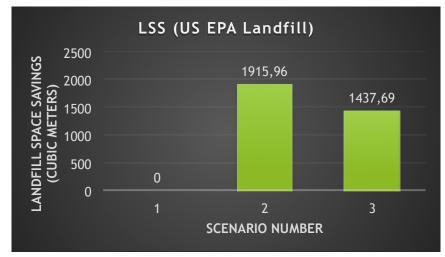
- High capital costs
- Maintenance costs

W.R.O.S.E model – Scenario 3 Results

ADVANTAGES


- Sorting of waste streams at the source.
- Less capital contribution required for composting.
- Composting is environmentally friendly.


DISADVANTAGES


- Composting results in GHG emissions
- Unnecessary costs incurred by hiring external companies
- Nutrient content in compost often has to be upgraded resulting in excess costs
- Composting has no energy recovery (required energy input)

W.R.O.S.E model – Scenario Comparison

W.R.O.S.E – Economic Analysis: MRF

				MRF PLA	T			
						405		
		EL	ONOMIC FEAS		BREAK EVEN L	ASE		
	ASSUMPTION	18-			ESTIMATED R	EVENUE-		
	nooomriion	v.		Tons/year	Sale price/ton	Raw material/ton	GM/Top	REVENUE
1	Project life	20	Newspaper	0		R 0.00	R 500.00	
2	Payback period	20	CVM	0	R 500.00	R0.00	R 500.00	R 0.00
3	Debt Interest rate	10.3%	K4	31.20963768	R 600.00	R0.00	R 600.00	R 18 725.78
Å	Debt percentage	50.0%	LDPE	2.51639856	R 1500.00	R0.00	R 1500.00	R 3 774.60
	Debt percentage		HDPE	0.02042352	R 2 700.00	R0.00	R 2 700.00	R 55.14
			PET	0.79474824	R 2 500.00	R0.00	R 2 500.00	R 1986.81
			PP	0.9828	R 2 000.00	R0.00	R 2 000.00	R 1 965.60
			PVC	0.0020	R1000.00	R0.00	R1000.00	R 0.00
			PS	0.4169412	R1000.00	R0.00	R1000.00	R 416.94
			Glass	0.4100412		R0.00	R 380.00	R 0.00
			FE Cans	0.04935528	R 1 060.00	R0.00 R0.00	R1060.00	
			AL Cans	r 0	R 1060.00 REVENUE/YEAR	R 26 977	R1060.00	R 0.00
					RETEROETIEAN	R 20 JH		
			CAPITAL	CAPITAL		OPERATING	GROSS	DEPRE-
YEAR	RAMP UP	REVENUE	THROUGH DEBT		INTEREST	COSTS	PROFIT	CIATION
0			-R 15 625 458				-R 15 625 458	
1	80%	R 21 581.80		-R 265 168	-R 1601609	-R 10 148 376	-R 11 993 571	R 6 250 183
2	85%	R 22 930.66		-R 292 347	-R 1574 430	-R 10 782 649	-R 12 626 496	R 6 250 183
3	30%	R 24 279.53		-R 322 313	-R 1544 464	-R 11 416 923	-R 13 259 420	R 6 250 183
4	95%	R 25 628.39		-R 355 350	-R 1511427	-R 12 051 196	-R 13 892 345	R 6 250 183
5	100%	R 26 977.25		-R 391773	-R 1475 004	-R 12 685 470	-R 14 525 270	R 6 250 183
6	100%	R 26 977.25		-R 431 930	-R 1434 847	-R 12 685 470	-R 14 525 270	RC
7	100%	R 26 977.25		-R 476 203	-R 1 390 574	-R 12 685 470	-R 14 525 270	RC
8	100%	R 26 977.25		-R 525 014	-R 1 341 763	-R 12 685 470	-R 14 525 270	RC
9	100%	R 26 977.25		-R 578 828	-R 1 287 949	-R 12 685 470	-R 14 525 270	RO
10	100%	R 26 977.25		-R 638 158	-R 1228 620	-R 12 685 470	-R 14 525 270	RO
				******	-R 13 162 068	IRR =	#NUM!	
E	TIMATED CAPITA	LL COST.	R 31 250 916.84					
ESII	MATED OPERAT	MG CU\$1:	R 12 685 469.80					

W.R.O.S.E – Economic Analysis: Composting Plant

			ECONO	OMIC FEASIBILIT	Y OF BREAK EVEN	CASE		
	P	SSUMPTIONS:			E	STIMATED RE		
							Sale price/Ton of compost	R 210.0
1	Project life		10				Raw Material/Ton of compost	R 0.0
2	Payback peri		10				GM/Ton of compost	R 210.0
3	Debt Interest		10.3%	12/04/2016			Tons of compost/day	3.221
4	Debt percent	age	50.0%				Tons of compost/month	96.64
							Tons of compost/year	1159.70
					REVENUE/YEAR :	R 243 538		
			CAPITAL	CAPITAL		OPERATING	GROSS PROFIT	DEPRE-
YEAR	RAMP UP	REVENUE	THROUGH DEBT	RECOVERY	INTEREST	COSTS	BEFORE TAX	CIATION
0			-R 23 535				-R 23 535	
1	80%	R 194 830.27		-R1459	-R 2 412	-R 188 089	R 2 870	R941
2	85%	R 207 007.16		-R1609	-R 2 263	-R 199 844	R 3 292	R941
3	90%	R 219 184.06		-B1774	-R 2 098	-R 211 600	R 3 713	R941
4	95%	R 231 360.95		-R1955	-R 1 916	-R 223 355	R 4 134	R941
5	100%	R 243 537.84		-R 2 156	-B 1716	-R 235 111	R 4 556	R941
6	100%	R 243 537.84		-R 2 377	-R 1495	-R 235 111	R 4 556	B
7	100%	R 243 537.84		-R 2 620	-B 1251	-R 235 111	R 4 556	B
8	100%	R 243 537.84		-R 2 889	-R 983	-R 235 111	R 4 556	B
9	100%	R 243 537.84		-R 3 185	-R 686	-R 235 111	R 4 556	B
10	100%	R 243 537.84		-R 3 512	-R 360	-R 235 111	R 4 556	B
				-R 23 535	-R 14 820	IBB =	10.87%	
ESTI	MATED CAP	ITAL COST:	R 47 070.68					
		ATING COST:	R 235 110.66					

W.R.O.S.E – Economic Analysis: AD Plant

I

ANAEROBIC DIGESTER PLANT

			ECON	OMIC FEASIBILIT	TY OF BREAK EVEN O	CASE		
	4	ASSUMPTIONS:				STIMATED REV		
				?	Production Cost/KWH		Sale price/Ton of digestate	R 250.00
1	Project life		20		Raw Materials/KWH		Raw Material/Ton of digestate	R 0.00
2	Payback peri		20		GM/KVH		GM/Ton of Digestate	R 250.00
3	Debt Interest		10.3%	12/04/2016	KWH/H		Tons of digestate/day	3.576439233
4	Debt percent	tage	50.0%		KWH/m		Tons of digestate/month	107.293177
					KWHły		Tons of digestate/year	1287.518124
					REVENUE/YEAR =	R 2 632 683		
			CAPITAL	CAPITAL		OPERATING	GROSS PROFIT	DEPRE-
YEAR	RAMP UP	REVENUE	THROUGH DEBT	RECOVERY	INTEREST	COSTS	BEFORE TAX	CIATION
0			-R 19 374 953				-R 19 374 953	
1	80%	R 2 106 146.18		-R 328 797	-R 1985 933	-R 3 117 903	-R 3 326 487	R 7 749 981
2	85%	R 2 237 780.32		-R 362 499	-R 1952 231	-R 3 312 772	-R 3 389 721	R 7 749 981
3	90%	R 2 369 414.45		-R 399 655	-R 1 915 075			R 7 749 981
4	95%	R 2 501 048.59		-R 440 620	-R 1 874 110	-R 3 702 509	-R 3 516 191	R 7 749 981
5	100%	R 2 632 682.73		-R 485 784	-R 1828 947	-R 3 897 378	-R 3 579 426	R 7 749 981
6	100%	R 2 632 682.73		-R 535 576	-R 1 779 154	-R 3 897 378	-R 3 579 426	R0
7	100%	R 2 632 682.73		-R 590 473	-R 1724 257	-R 3 897 378	-R 3 579 426	R0
8	100%	R 2 632 682.73		-R 650 996	-R 1663 734	-R 3 897 378	-R 3 579 426	R0
9	100%	R 2 632 682.73		-B 717 724	-R 1597 007	-R 3 897 378	-R 3 579 426	R0
10	100%	R 2 632 682.73		-R 791290	-R 1523 440	-R 3 897 378	-R 3 579 426	R0
				-R 5 303 415	-R 16 320 446	IRR =	#NUM!	
ESTIM	ATED CAP	PITAL COST:	R 38 749 906.25					
ESTIMA	TED OPER	RATING COST:	R 3 897 378.28					
,							·	

MRF

Economic Indicator	Estimated Cost (Rand)		
Capital Cost	R 31, 250, 917		
Annual Revenue	R 26, 977		
Annual Operating Cost	R 12, 685 470		

AD PLANT

Economic Indicator	Estimated Cost (Rand)			
Capital Cost	R 39, 046, 966			
Annual Revenue	R 1, 448, 339			
Annual Operating Cost	R 3, 917, 857			

CONCLUSIONS

The implementation of anaerobic digestion at the AgriZone will divert waste from landfill and optimise waste management strategies at DTP by using the waste as a resource to achieve as close to a "zero waste model" as possible.

The environmental and social benefits of AD far outweigh those of composting.

- Unless ideal conditions are established to maximise yields to generate profits from by-products, and/or external capital investment is received, AD is not the most economically feasible technology.
- It is imperative that the optimal conditions are determined for maximum methane production, and pre- and post-treatment methods are utilised to enhance the nutrient content of the digestate.

- Integration of WROSE into the overall policy framework to meet municipal and industry specified needs
- To utilize WROSE to promote integrated waste management as a climate change stabilization wedge for South Africa
- Refine the model through the application of various case studies at national level
- Continuous updating for the insurance of relevance and validity of indicators

THANK YOU

Prof Cristina Trois

South African Research Chair in Waste and climate change University of KwaZulu-Natal, Durban, South Africa

troisc@ukzn.ac.za

The SARCHI Chair in Waste and Climate Change

26-30 November 2018

International Training Seminar and Summer School in Managing Waste as a Resource

